Bibliography

[1]   Kannel, W. B., Sorlie, P. Hypertension in Framingham. In: O. Paul (ed.), Epidemiology and Control in Hypertension, pages 553–592. Stratton, 1975

[2]   Berglund, G., Andersson, O., Wilhelmsen, L. Prevalence of primary and secondary hypertension. Studies in a random population sample. Br. Med. J., 2:554–556, 1976

[3]   Bianchi, G., Fox, U., Di-Francesco, F. G., Bardi, U., Radice, M. The hypertensive role of the kidney in spontaneously hypertensive rats. Clin. Sci. Mol. Med., 45(Suppl1):135s–139, 1973

[4]   Okamoto, K., Aoki, K. Development of a strain of spontaneously hypertensive rats. Jpn. Circ. J., 27:282–293, 1963

[5]   Sever, P. S., Poulter, N. R. In: A. Hofman, D. E. Grobbee, M. A. D. H. Schalekamp (eds.), Early Pathogenesis of primary Hypertension, pages 127–140. Elsevier Science Publishers, 1987

[6]   Molen, R. V., Brewer, G., Honeyman, M. S., Morrison, J., Hoobler, S. W., Arbor, A. A study of hypertension in twins. Am. Heart J., 79:454–457, 1970

[7]   Rose, R. J., Grim, C. E., Miller, J. Z. Genetic, familial and racial influences on blood pressure control systems in man. Behav. Med. Update, 6:21–24, 1984

[8]   Luft, F. C., Miller, J. Z., Weinberger, M. H., Grim, C. E., Daugherty, S. A., Christian, J. C. Influence of genetic variance on sodium sensitivity of blood pressure. Klin. Wochenschr., 65(3):101–109, 1987

[9]   Staden, H. V. Herophilus: The Art of Medicine in Early Alexandria. Cambridge University Press, New York, 1989

[10]   Donnison, C. P. Blood pressure in the African native: Its bearing upon aetiology of hyperpiesia and arteriosclerosis. Lancet, 1:6–11, 1929

[11]   Levine, E. B. The blood pressure of Eskimos. Fed. Proc. Fed. Am. Soc. Exp. Biol., 1:121, 1942

[12]   Nye, L. J. Blood pressure in the Australian Aboriginal, with a consideration of possible aetiological factors in hyperplasia and its rlation to civilisation. Med. J. Aust., 1:1000–1001, 1937

[13]   Williams, A. W. Blood pressure of Africans. East Afr. Med. J., 18:109–117, 1941

[14]   Lifton, R. P. Molecular genetics of human blood pressure variation. Science, 272(5262):676–680, May 1996

[15]   Scherer, B., Friedmann, B., Dumbs, A., Holzmann, K., Weber, P. C. Urinary prostaglandins in human neonates: relationship to kidney function and blood pressure. Klin. Wochenschr., 58:449–, 1981

[16]   Feinleib, M., Garrison, R., Borhani, N., Rosenman, R., Christian, J. Studies of hypertension in twins. In: O. Paul (ed.), Epidemiology and Control of Hypertension. Stratton, New York, London, 1975

[17]   Biron, P., Mongeau, J., Bertrans, D. Familial aggregation of blood pressure in 558 adopted children. Can. Med. Assoc. J., 115:773–, 1976

[18]   Feinleib, M., Robert, P. H., Garrison, R. The contribution of family studies to the partitioning of population variations of blood pressure. In: C. F. Sing, M. Skolnicck (eds.), Genetic Analysis of Common Diseases, pages 653–673. Liss, New York, 1979

[19]   Hamilton, M., Pickering, G. S., Fraser-Roberts, J. A. F., Sowry, G. S. C. The aetiology of essential hypertension: 4. The role of inheritance. Clin. Sci., 13:273–279, 1954

[20]   Hayes, C. G., Tyroler, H. A., Cassel, J. C. Family aggregation of blood pressure in Evans County, Georgia. Arch. Intern. Med., 128:965–, 1971

[21]   Miall, W. E., Heneage, P., Khosla, T., Lovell, H. G., Moore, F. Factors influencing the degree of resemblance in aterial pressure of close relatives. Clin. Sci., 33:271–, 1967

[22]   Ward, R. Familial aggregation and genetic epidemiology of blood pressure. In: J. H. Laragh, B. M. Brenner (eds.), Hypertension: Pathophysiology, Diagnosis and Management, pages 81–100. Raven Press, New York, 1990

[23]   Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure. The Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure (JNC VI). Arch. Intern. Med., 157:2413–2446, 1997

[24]   Lander, E. S., Schork, N. J. Genetic dissection of complex traits. Science, 265(5181):2037–2048, September 1994

[25]   Holzgreve, H. Aspects of the pathogenesis of essential hypertension. In: M. Middeke, H. Holzgreve (eds.), New Aspects in Hypertension, page 81. Springer, Berlin, Heidelberg, 1986

[26]   Williams, R. R., Hunt, S. C., Hopkins, P. N., Hasstedt, S. J., Wu, L. L., Lalouel, J. M. Tabulations and expectations regarding the genetics of human hypertension. Kidney Int., 45(suppl 44):S57–S64, 1994

[27]   Lifton, R. P. Genetic determinants of human hypertension. Proc. Natl. Acad. Sci. USA, 92:8545–8551, 1995

[28]   Sutherland, D. J., Ruse, J. L., Laidlaw, J. C. Hypertension, increased aldosterone secretion and low plasma renin activity releived by dexamethasone. Can. Med. Assoc. J., 95(22):1109–1119, nov 1966

[29]   Lifton, R. P., Dluhy, R. G., Powers, M. A chimaeric 11 β-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature, 355(6357):262–265, January 1992

[30]   White, P. C. Inherited forms of mineralocorticoid hypertension. Hypertension, 28(6):927–936, December 1996

[31]   Mune, T., Rogerson, F. M., Nikkila, H., et al. Human hypertension caused by mutations in the kidney isozyme of 11 β-hydroxysteroid dehydrogenase. Nat. Genet., 10(4):394–399, August 1995

[32]   Stewart, P. M., Krozowsky, Z. S., Gupta, A., et al. Hypertension in the syndrome of apparent mineralocorticoid excess due to mutations of the 11 β-hydroxysteroid dehydrogenase type 2 gene. Lancet, 347(8994):88–91, January 1996

[33]   Liddle, G. W., Bledsoe, T., Coppage, W. S. A familial renal disorder stimulating primary aldosteronism but with negligible aldosterone secretion. Trans. Assoc. Am. Physicians, 76:199–213, 1963

[34]   Shimkets, R., Warnock, D. G., Bositis, C. M., et al. Liddles syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell, 79(3):407–414, November 1994

[35]   Gordon, R. D., Geddes, R. A., Pawsey, C. G., et al. Hypertension and severe hyperkalaemia associated with suppression of renin and aldosterone and completely reversed by dietary sodium restriction. Australas. Ann. Med., 19(4):287–294, November 1970

[36]   Mansfield, T. A., Simon, D. B., Farfel, Z., et al. Multilocus linkage of familial hyperkalaemia and hypertension, pseudohypoaldosteronism type II, to chromosomes 1q31-42 and 17p11-q21. Nat. Genet., 16(2):202–205, June 1997

[37]   Julier, C., Delepine, M., Keaveney, B., et al. Genetic suspectibility for human familial essential hypertension in a region of homology with blood pressure linkage on rat chromosome 10. Hum. Mol. Genet., 6(12):2077–2085, November 1997

[38]   Luft, F. C. Molecular genetics of human hypertension. J. Hypertension, 16:1871–1878, 1998

[39]   Chitayat, D., Grix, A., Balfe, J. W., Abramowicz, J. S., Garza, J., Fong, C. T., Silver, M. M., Saller, D. N., Bresnick, G. H., Giedion, A., Lachman, R. S., Rimoin, D. L. Brachydactyly–short stature–hypertension (Bilginturan) syndrome: report on two families. Am. J. Med. Genetics, 73(3):279–285, December 1997

[40]   Zerba, K. E., Sing, C. F. The role of genome type-environment interaction and time in understanding the impact of genetic polymorphisms on lipid metabolism. Curr. Opin. Lipidol., 4:152–162, 1993

[41]   Kaplan, N. M., Ram, C. V. S. Hypertension in ethnic sub-groups. In: J. D. Swales (ed.), Textbook of Hypertension, pages 811–828. Blackwell, Oxford, 1994

[42]   Luft, F. C., Sharma, A. M. Identifying the genetic determinants of hypertension. Clin. Invest., 71:871–873, 1993

[43]   Jeunemaitre, X., Soubrier, F., Kotelevtsev, Y. V., Lifton, R. P., Williams, C. S., Charu, A., Hunt, S. C., Hopkins, P. N., Williams, R. R., Lalouel, J.-M., Corvol, P. Molecular basis of human hypertension: Role of Angiotensinogen. Cell, 71:169–180, October 1992

[44]   Caulfield, M., Lavender, P., Farrall, M., Munroe, P., Lawson, M., Turner, P., Clark, A. J. L. Linkage of the angiotensinogen gene to essential hypertension. New Engl. J. Med., 330(23):1629–1633, June 1994

[45]   Caulfield, M., Lavender, P., Newell-Price, J., Farrall, M., Kamdar, S., Daniel, H., Lawson, M., De Freitas, P., Fogarty, P., Clark, A. J. L. Linkage of the angiotensinogen gene locus to human essential hypertension in african caribbeans. J. Clin. Invest., 96:687–692, August 1995

[46]   Schunkert, H., h. W. Hense, Gimenez-Roqueplo, A., et al. The angiotensinogen T235 variant and the use of antihypertensive drugs in a population based cohort. Hypertension, 29(2):628–633, 1997

[47]   Hingorani, A. D., Sharma, P., Jia, H., et al. Blood pressure and the M235T polymorphism of the angiotensinogen gene. Hypertension, 28(5):628–633, 1996

[48]   Jeunemaitre, X., Inoue, I., Williams, C., et al. Haplotypes of angiotensinogen in essential hypertension. Am. J. Hum. Genet., 60(6):1448–1460, 1997

[49]   Inoue, I., Nakajima, T., Williams, C. S., et al. A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J. Clin. Invest., 99(7):1786–1797, 1997

[50]   Ishigami, T., Umemura, S., Tamura, K., et al. Essential hypertension and 5’upstream core promoter region of human angiotensinogen gene. Hypertension, 30(6):1325–1330, 1997

[51]   Dudley, C., Keavney, B., Casadei, B., et al. Prediction of patient responses to antihypertensive drugs using genetic polymorphisms: investigation of renin-angiotensin system genes. J. Hypertens., 14(2):259–262, 1996

[52]   Dieguez-Lucena, J. L., Aranda-Lara, P., Ruiz-Galdon, M., et al. Angiotensin I-converting enzyme genotypes and angiotensin II receptors - response to therapy. Hypertension, 28(1):98–103, 1996

[53]   Sasaki, M., Takashi, O., Luchi, A., et al. Relationship between the angiotensin onverting enzyme gene polymorphisms and th effects of enalapril on left ventricular hypertrophy and impaired diastolic filling in essential hypertension: M-mode and pulsed doppler echocardiographic studies. J. Hypertens., 14(12):1403–1408, 19906

[54]   Hingorani, A. D., Jia, H., Stevens, P., et al. Renin-angiotensin system gene polymorphisms influence blood pressure and the response to angiotensin converting enzyme inhibition. J. Hypertens., 13(12):1602–1609, 1995

[55]   Zee, R. Y. L., Lou, Y. K., Morris, B. J. Association of a polymorphism of the angiotensin I-converting enzyme gene with essential hypertension. Biochem. Biophys. Res. Commun., 184(1):9–15, 1991

[56]   Jeunemaitre, X., Lifton, R. P., Hunt, S. C., et al. Absence of linkage between the angiotensin converting enzyme locus and human essential hypertension. Nat. Genet., 1(1):72–75, 1992

[57]   Schmidt, S., van Hooit, M. S., Grobbee, D. E., et al. Polymorphism of the angiotensin I converting enzyme gene is apparently not related to high blood pressure: Dutch hypertension and offspring study. J. Hypertens., 11(4):345–348, 1993

[58]   Harrap, S. B., Davidson, H. R., Connor, J. M., et al. The angiotensin I converting enzyme gene and predisposition to high blood pressure. Hypertension, 21(4):455–460, 1993

[59]   Bonnardeaux, A., Davies, E., Jeunemaitre, X., et al. Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension, 24(1):63–69, 1994

[60]   Bianchi, G., Tripodi, G., Casari, G., et al. Two point mutations within the adducin genes are involved in blood pressure variations. Proc. Natl. Acad. Sci. USA, 91(9):3999–4003, 1994

[61]   Tripodi, G., Valtorta, F., Torielli, L., et al. Hypertension-associated point mutations in the adducin alpha and beta subunits affect actin cytoskeleton and ion transport. J. Clin. Invest., 97(12):2815–2822, 1996

[62]   Cusi, D., Barlassina, C., Azzani, T., et al. Polymorphisms of alpha adducin and salt sensitivity in patients with essential hypertension. Lancet, 349(9062):1353–1357, 1997

[63]   O’Connor, D. T., Kailasam, M. T., Parmer, R. T. Complex trait genetics: new methods yield a result for essential hypertension. J. Clin. Invest., 97(9):1997–1998, May 1996

[64]   Brown, M. J. The causes of essential hypertension. Br. J. Clin. Pharmacol., 42(1):21–27, July 1996

[65]   Risch, N., Zhang, H. Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science, 268(5217):1584–1589, June 1995

[66]   Osswald, W., Guimaraes, S. Adrenergic mechanisms in Blood Vessels: Morphological and pharmacological aspects. Rev. Physiol. Biochem. Pharmacol., 96:54–104, 1983

[67]   Göethert, M. Role of autoreceptors in the function of the peripheral and central nervous system. Arzneimittelforschung Drug Res., 35(II):1909–1916, 1985

[68]   Rowell, L. B. Regulation during physical stress. In: Human Circulation, pages 20–28. Oxford University Press, New York, 1986

[69]   Brodde, O. E. Die Rolle adrenerger α- und β-Rezeptoren in der Pathogenese von Hypertonie und Herzerkrankungen. Der Internist, 29:397–413, 1988

[70]   Ahlquist, R. P. A study of the adrenotropic receptors. Am. J. Physiol., 153:586–600, 1948

[71]   Lefkowitz, R. J., Caron, M. G. Minireview: Adrenergic receptors – Models for the Study of Receptors coupled to Guanine Nucleotide Regulatory Proteins. J. Biol. Chem., 263(11):4993–4996, 1988

[72]   Strosberg, A. D. The Molecular Biology of Receptors. In: The β-adrenergic receptors and G-proteins, pages 139–162. 1987

[73]   Strasser, R. H., Ihl-Val, R., Marquetant, R. Molecular Review: Molecular biology of adrenergic receptors. J. Hypertens., 10:501–506, 1992

[74]   Chung, F. Z., Wang, C. D., Dotter, P. C., Venter, S. C., Fraser, C. M. Site-directed mutagenesis and continuous expression of human β-adrenergic receptors. J. Biol. Chem., 263(9):4052–4055, March 1988

[75]   Bouvier, M., Hausdorff, W. P., Blasi, A. D., O’Dowd, B. F., Kobilka, B. K., Caron, M. G., Lefkowitz, R. J. Removal of phosphorylation sites from the β2-adrenergic receptor delays onset of agonist-promoted desensitization. Nature, 333(6171):370–373, May 1988

[76]   Bylund, D. B. Subtypes of α2-adrenoceptor: Pharmacological and molecular biological evidence converge. Trend Pharmacol. Sci., 9(10):356–361, October 1988

[77]   Fraser, C. M. Site-directed mutagenesis of β-adrenergic receptors. Identification of conserverd cysteine residues that independently affect ligand binding and receptor activation. J. Biol. Chem., 264(16):9266–9270, June 1989

[78]   Kobilka, B. K., Matsui, H., Kobilka, T. S., Yang-Feng, T. L., Francke, U., Laron, M. G., Lefkowitz, R. J., Regan, J. W. Cloning, sequencing, and expression of the gene coding for the human platelet α2-adrenergic receptor. Science, 238(4827):650–656, October 1987

[79]   Shull, G. E., Greeb, J., Lingrel, J. B. Molecular cloning of three distinct forms of the Na+/K+-ATPase α-subunit from rat brain. Biochem., 25(25):8125–8132, December 1986

[80]   Senard, J. M., Langin, D., Estan, L., Paris, H. Identification of α2-adrenoceptors and non-adrenergic idazoxan binding sites in rabbit colon epithelial cells. Eur. J. Pharmacol., 191(1):59–68, November 1990

[81]   Lanier, S. M., Homey, C. J., Patenaude, C., Graham, R. M. Identification of structurally distinct α2-adrenergic receptors. J. Biol. Chem., 263(28):14491–14496, October 1988

[82]   Lomasney, J. W., Lorenz, W., Allen, L. F., King, K., Regan, J. W., Yang-Feng, T. L., Caron, M. G., Lefkowitz, R. J. Expansion of the α2-adrenergic receptor family: Cloning and characterization of a human α2-adrenergic receptor subtype, the gene of wich is located on chromosome 2. Proc. Natl. Acad. Sci. USA, 87(13):5094–5098, July 1990

[83]   Regan, J. W., Kobilka, T. S., Yang-Feng, T. L., Caron, M. G., Lefkowitz, R. J., Kobilka, B. K. Cloning and expression of a human kidney cDNA for an α2- adrenergic receptor subtype. Proc. Natl. Acad. Sci. USA, 85(17):6301–6305, September 1988

[84]   Dixon, R. A. F., Sigal, I. S., Candelore, M. R., Register, R. B., Scattergood, W., Rands, E., Strader, C. D. Structural features required for ligand binding to the β-adrenergic receptor. EMBO J., 6(11):3269–3275, November 1987

[85]   Gilman, A. G., Smigel, M. D., Bokoch, G. M., Robishaw, J. D. Guanine-nucleotide-binding regulatory proteins in mechanisms of receptor regulation. pages 149–158. Plenum Press, New York, 1985

[86]   Gierschik, P., Grandt, R., Marquetant, R., Jakobs, K. H. Role of G-proteins in signal transduction. J. Cardiovasc. Pharm., 10:6–10, 1978

[87]   Gilman, A. G. G proteins and dual control of adenylate cyclase. Cell, 36(3):577–579, March 1984

[88]   Campbell, P. T., Hnatowich, M., O’Dowd, B. F., Caron, M. G., Lefkowitz, R. J., Hausdorff, W. P. Mutations of the human β2 adrenergic receptor that impair coupling to Gs interfere with receptor downregulation but not sequestration. Mol. Pharmacology, 39:192–198, 1990

[89]   Dohlman, H. G., Bouvier, M., Benovic, J. L., Cavon, M. G., Lefkowitz, R. J. The multiple membran spanning topography of the β2-adrenergic receptor. Localization of the sites of binding, glycosylation, and regulatory phosphorylation by limited proteolysis. J. Biol. Chem., 262(29):14282–14288, October 1987

[90]   Rands, E., Candelore, M. R., Cheung, A. H., Hill, W. S., Strader, C. D., Dixon, R. A. Mutational analysis of β-adrenergic receptor glycosylation. J. Biol. Chem., 265(18):10759–10764, June 1990

[91]   Cervantes-Olivier, P., Delavier-Klutchko, C., Durier-Trautmann, O., Kaveri, S., Desmandril, M., Strosberg, A. D. The β2-adrenergic receptors of human epidermoid carcinoma cells bear two different types of oligosaccharides which influence expression on the cell surface. Biochem. J., 250(1):133–143, February 1988

[92]   Kobilka, B. K. The role of cytosolic and membrane factors in processing the human β2 adrenergic receptor following translocation and glycosylation in a cell-free system. J. Biol. Chem., 265(13):7610–7618, May 1990

[93]   Martin-Vasallo, P., Dackowski, W., Emanuel, J. R., Levenson, R. Identification of a putative isoform of the Na+/K+-ATPase β subunit. J. Biol. Chem., 264(8):4613–4618, March 1989

[94]   Strader, C. D., Candelore, M. R., Hill, W. S., Sigal, I. S., Dixon, R. A. Identification of two serine residues involved in agonist activation of the β-adrenergic receptor. J. Biol. Chem., 264(23):13572–13578, August 1989

[95]   Strader, C. D., Candelore, M. R., Hill, W. S., Dixon, R. A., Sigal, I. S. A single amino acid substitution in the β-adrenergic receptor promotes partial agonist activity from antagonists. J. Biol. Chem., 264(28):16470–16477, October 1989

[96]   Tota, M. R., Strader, C. D. Characterization of the binding domain of the β-adrenergic receptor with the fluorescent antagonist carazolol. J. Biol. Chem., 265(28):16891–16897, October 1990

[97]   Strader, C. D., Sigal, I. S., Candelore, M. R., Rands, E., Hill, W. S., Dixon, R. A. Conserved aspartic acid residues 79 and 113 of the β-adrenergic receptor have different roles in receptor function. J. Biol. Chem., 263(21):10267–10271, July 1988

[98]   DeLean, A., et al. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J. Biol. Chem., 255:7108–7171

[99]   O’Dowd, B. F., Hnatowich, M., Caron, M. G., Lefkowitz, R. J., Bouvier, M. Palmitoylation of the human β2-adrenergic receptor. J. Biol. Chem., 264(13):7564–7569, May 1989

[100]   Yang-Feng, T. L., Xue, F., Zhong, W., Cotecchia, S., Frielle, T., Caron, M. G., Lefkowitz, R. J., Francke, U. Chromosomal organisation of adrenergic receptor genes. Proc. Natl. Acad. Sci. USA, 87:1516–1520, 1990

[101]   Kobilka, B. K., Frielle, T., Dohlma, H. G., Bolanowski, M. A., Dixon, R. A. F., Keller, P., Caron, M. G., Lefkowitz, R. J. Deliniation of the intronless nature of genes for the human and hamster β2 adrenergic receptor and their putative promotor regions. J. Biol. Chem., 262:7321–7327, 1987

[102]   Collins, S., Caron, M. G., Lefkowitz, R. J. β2 adrenergic receptors in hamster smooth muscle cells are transcripionally regulated by glucocorticoids. J. Biol. Chem., 263:9067–9070, 1988

[103]   Collins, S., Bouvier, M., Bolanowski, M. A., Caron, M. G., Lefkowitz, R. J. cAMP stimulates transcription of the β2 adrenergic receptor gene in response to short-term agonist exposure. Proc. Natl. Acad. Sci. USA, 86:4853–4857, 1989

[104]   Parcla, A. L., Kobilka, B. K. The peptide product of a 5’ leader cistron in the β2 adrenergic receptor mRNA inhibits receptor synthesis. J. Biol. Chem., 269:4497–4505, 1994

[105]   Liggett, S. B., Bouvier, M., O’Dowd, B. F., Caron, M. G., Lefkowitz, R. J., DeBlasi, A. Substitution of an extracellular cysteine in the β2-adrenergic receptor enhances receptor phosphorylation and desensitization. Biochem. Biophys. Res. Commun., 165(257–263), 1989

[106]   Liggett, S. B., Caron, M. G., Lefkowitz, R. J., Hnatowich, M. Coupling of a mutated form of the human β2-adrenergic receptor to G

iandG_s: requirementsformultiplecytoplasmicdomainsinthecouplingprocess.J. Biol. Chem., 266 : 4816 --4821, 1991

[107]   Strader, C. D., Sigal, I. S., Register, R. B., Candelore, M. R., Rands, E., Dixon, R. A. F. Identification of residues required for ligand binding to the β-adrenergic receptor. Proc. Natl. Acad. Sci. USA, 84:4384–4388, 1987

[108]   Fraser, C. M., Chung, F. Z., Wang, C. D., Venter, J. C. Site-directed mutagenesis of human β-adrenergic receptors: substitution of aspartic acid–130 by asparagine produces a receptor with high-affinity agonist binding that is uncoupled from adenylate cyclase. Proc. Natl. Acad. Sci. USA, 85:5478–5482, 1988

[109]   Kotanko, P., Höglinger, O., Skrabal, F. β2 Adrenoceptor density in fibroblast culture correlates with human NaCl sensitivity. Am. J. Physiol., 263:C623–C627, 1992

[110]   Binder, A. Alleles of the Human β2 Adrenergic Receptor Gene and Possible Effects on the Phenotype. Master’s thesis, Karl-Franzens-University of Graz, Graz, Austria, July 1996

[111]   Kobilka, B. K., Dixon, R. A. F., Frielle, T., Dohlman, H. G., Bolanowski, M. A., Sigal, I. S., Yang-Feng, T. L., Francke, U., Caron, M. G., Lefkowitz, R. J. cDNA for the human β2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc. Natl. Acad. Sci. USA, 84:46–50, 1987

[112]   Emorine, L. J., Marullo, S., Delavier-Klutchko, C., Kaveri, S. V., Durieu-Trautmann, O., Strosberg, A. D. Structure of the gene for the human β2-adrenergic receptor: Expression and promoter characterization. Proc. Natl. Acad. Sci. USA, 84:6995–6999, 1987

[113]   Schofield, P. R., Rhee, L. M., Peralta, E. G. Primary structure of the human β-adrenergic receptor gene. Nucleic Acids Res., 15:3636–3636, 1987

[114]   Kyte, J., Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 157(1):105–132, May 1982

[115]   Brawerman, G., Mendecki, J., Lee, S. Y. A procedure for the isolation of mammalian messenger ribonucleic acid. Biochemistry, 78:4204, 1972

[116]   Davis, L. G., Dibner, M. D., Battey, J. F. DNA/RNA extraction and precipitation. In: Basic methods in molecular biology, pages 320–323. Elsevier Science Publishers, 1986

[117]   Kirby, K. S. A new method for the isolation of nucleic acids from mammalian tissues. Biochem. J., 64:405, 1956

[118]   Sharp, P. A., Sugden, B., Sambrook, J. Detection of two restriction endonuclease activities in Haemophilus parainfluenza using analytical agarose. Biochemistry, 12:3055, 1973

[119]   Maniatis, T., Jeffrey, A., Kleid, D. G. Nucleotide sequence of the rightward operator of phage λ. Proc. Natl. Acad. Sci. USA, 72:1184, 1975

[120]   Mullis, K. B., Faloona, F. A. Specific synthesis of DNA in vitro via polymerase-catalyzed chain reaction. Meth. Enzymol., 155:335–350, 1987

[121]   Mullis, K. B., Faloona, F. A., Scharf, S. J., Saiki, R. K., Horn, G. T., Erlich, H. A. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp. Quant. Biol., 51(Pt1):263–273, 1986

[122]   Saiki, R. K., Scharf, S., Faloona, F. A., Mullis, K. B., Horn, G. T., Erlich, H. A., Arnheim, N. Enzymatic amplification of β-globin genomic sequences and restriction sites analysis for diagnosis of sickle cell anemia. Science, 230(4732):1350–1354, December 1985

[123]   Saiki, R. K., Bugawan, T. L., Horn, G. T., Mullis, K. B., Erlich, H. A. Analysis of enzymatically amplified β-globin and the HLA-DQ α DNA with allele-specific oligonucleotide probes. Nature, 324(6093):163–166, November 1986

[124]   Embury, S. H., Scharf, S. J., Saiki, R. K., Gholson, M. A., Golbus, M., Arnheim, N., Erlich, H. A. Rapid prenatal diagnosis of sickle cell anemia by a new method of DNA analysis. New Engl. J. Med., 316(11):656–661, March 1987

[125]   Scharf, S. J., Horn, G. T., Erlich, H. A. Direct cloning and sequence analysis of enzymatically amplified genomic sequences. Science, 233(4768):1076–1078, September 1986

[126]   Stoflet, E. S., Koeberl, D. D., Sarkar, G., Sommer, S. S. Genomic amplification with transcript sequencing. Science, 239:491–494, January 1988

[127]   Rychlik, W., Rhoads, R. E. A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucl. Acids Res., 17(21):8543–8551, November 1989

[128]   Suggs, S. V., Wallace, R. B., Hirose, T., Kawashima, E. H., Itakura, K. Use of synthetic oligonucleotides as hybridization probes: Isolation of cloned cDNA sequences for human β2-microglobulin. Proc. Natl. Acad. Sci. USA, 78(11):6613, November 1988

[129]   Sambrook, J., Fritsch, E. F., Maniatis, T. In: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989

[130]   Wu, D. Y., Ugozzoli, L., Pal, B. K., Qian, J., Wallace, R. B. Comparison between DNA melting thermodynamics and DNA polymerase fidelity. DNA and Cell Biol., 10:233, September 1991

[131]   Petruska, J., Goodman, M. F., Boosalis, M. S., Sowers, L. C., Cheong, C., Tinoco, I. Comparison between DNA melting thermodynamics and DNA polymerase fidelity. Proc. Natl. Acad. Sci. USA, 85(17):6252–6256, 1988

[132]   Eckert, K. A., Kunkel, T. A. The fidelity of DNA polymerase and the polymerases used in the PCR. In: M. J. McPherson, P. Quirke, G. R. Taylor (eds.), Polymerase Chain Reaction I: A Practical Approach. IRL Press, Oxford, 1991

[133]   Krawczak, M., Reiss, J., Schmidke, J. Polymerase chain reaction: Replication error and reliability of gene diagnosis. Nucl. Acids Res., 17:2197–2201, 1989

[134]   Hayashi, K. PCR-SSCP: A simple and sensitive method for detection of mutations in the genomic DNA. PCR Meth. Appl., 1:34–38, 1991

[135]   Kwok, S., Higuchi, R. Avoiding false positives with PCR. Nature, 339:237, 1989

[136]   Maxam, A. M., Gilbert, W. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA, 74(2):560–564, February 1977

[137]   Maxam, A. M., Gilbert, W. Sequencing end-labeled DNA with base-specific chemical cleavages. Meth. Enzymol., 65(1):499–560, 1980

[138]   Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A., Weiner, A. M. Molecular Biology of the Gene. Benjamin-Cummings, Menlo Park, CA, 4th edition, 1987

[139]   Sanger, F., Nicklen, S., Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74(12):5463–5467, December 1977

[140]   Sanger, F., Coulson, A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol., 94(3):441–448, May 1975

[141]   Victor, R. G., Mark, A. L. The sympathetic nervous system in human hypertension. In: J. H. L. B. M. Brenner (ed.), Hypertension: Pathophysiology, Diagnosis and Management, pages 863–878. Raven Press, New York, 1995

[142]   Skrabal, F., Kotanko, P., Luft, F. C. Inverse regulation of α2 and β2 adrenoceptors in salt-sensitive hypertension: An hypothesis. Life Sci., 45(22):2061–2076, 1989

[143]   Kaplan, N. M. Ethnic aspects of hypertension. Lancet, 344:450–452, 1994

[144]   Luft, F. C., Grim, C. E., Higgins, J. T., Weinberger, M. H. Differences in response to sodium administration in normotensive white and black subjects. J. Lab. Clin. Med., 90:555–562, 1977

[145]   Anderson, N. B., Meyers, H. F., Pickering, T., Jackson, J. S. Hypertension in blacks: psychosocial and biological perspectives. J. Hypertens., 7:161–172, 1989

[146]   Winter, E., Yamamoto, F., Almoguera, C., Perucho, M. A method to detect and characterize point mutatons in transcribed genes: Amplification and overexpression of the mutant c-Ki-ras allele in human tumor cells. Proc. Natl. Acad. Sci. USA, 82:7575–7579, 1985

[147]   Myers, R. M., Larin, Z., Maniatis, T. Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science, 230:1242–1246, 1985

[148]   Orita, M., Iwahana, H., Kanaqawa, H., Hayashi, K., Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA, 86:2766–2770, 1989

[149]   Orita, M., Suzuki, Y., Sekiya, T., Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics, 5:874–879, 1989

[150]   Fisher, S. G., Lerman, L. S. Separation of random fragments of DNA according to properties of their sequences. Proc. Natl. Acad. Sci. USA, 77:4420–4424, 1980

[151]   Fisher, S. G., Lerman, L. S. DNA fragments differing by single base pair substitutions separated in denaturing gradient gels: Correspondence with melting theory. Proc. Natl. Acad. Sci. USA, 80:1579–1583, 1983

[152]   Myers, R. M., Fisher, S. G., Lerman, L. S., Maniatis, T. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucl. Acids Res., 13:3131–3145, 1985

[153]   Abrams, E. S., Murdaugh, S. E., Lerman, L. S. Comprehensive detection of single base changes in human genomic DNA using denaturing gradient electrophoresis and a GC-clamp. Genomics, 7:463–475, 1990

[154]   Sheffield, V. C., Cox, R., Lerman, L. R., Meyer, R. M. Attachment of a 40-base-pair G+C rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. USA, 86:232–236, 1989

[155]   Conner, B. J., Reyes, A. A., Morin, C., Itakura, K., Teplitz, R. L., Wallace, R. B. Detection of sickle cell β-S globin allele by hybridization with synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA, 80:274–282, 1983

[156]   Kwok, S., Kellogg, D. E., McKinney, N., Spasic, D., Goda, L., Sninsky. Effect of primer-template mismatches on the polymerase chain reaction: Human immunodefficiency virus type 1 model studies. Nucl. Acids Res., 18:999–1005, 1990

[157]   Wu, D. Y., Ugozzoli, L., Pal, B. K., Wallace, R. B. Allele-specific amplification of β-globin genomic DNA for diagnosis of sickle cell anemia. Proc. Natl. Acad. Sci. USA, 86:2757–2760, 1989

[158]   Okayama, H., Curiel, D. T., Brantly, M. L., Holmes, M. D., Crystal, R. D. Rapid nonradioactive detection of mutations in the human genome by allele-specific amplification. J. Lab. Clin. Med., 114:105–113, 1989

[159]   Newton, C. R., Graham, A., Heptinstall, L. E., Powell, S. J., Smith, J. C., Markham, A. C. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucl. Acids Res., 17:2503–2516, 1989

[160]   Stork, P., Loda, M., Bosari, S., Wiley, B., Poppenhusen, K., Wolfe, H. Detection of K-ras mutations in pancreatic and hepatic neoplasms by non isotopic mismatched polymerase chain reaction. Oncogene, 6:857–862, 1991

[161]   Sommer, S. S., Cassady, J. D., Sobell, J. L. A novel method for detecting point mutations or polymorphisms and its application to population screening for carriers of phenylketonuria. Mayo Clin. Proc., 64:1361–1372, 1989

[162]   Nelson, M. A., Futscher, B. W., Kinsella, T., Wymer, J., Bowden, G. T. Detection of mutant Ha-ras genes in chemically initiated mouse skin epidermis before the development of benign tumors. Proc. Natl. Acad. Sci USA, 89:6398–6402, 1992

[163]   Petrie, J. C., O’Brien, E. T., Littler, W. A., de Swiet, M., Padfield, P. L., Dillon, M. J. British Hypertension Society recommendations on blood pressure measurement. Br. Med. J., 293:611–615, 1986

[164]   Perkin Elmer, personal communication

[165]   Kamdar, S., Daniel, H., Fogarty, P., Lawson, M., Munroe, P., Caulfield, M. ACE insertion/deletion (I/D) polymorphism in Vincentian African Caribbeans with essential hypertension. J. Hum. Hypertens., 8:611, 1994

[166]   Dibona, G. F. Sympathetic nervous system influences on the kidney: role in hypertension. Am. J. Hypertens., 2:119s–124s, 1989

[167]   Naslund, T., Silberstein, D. J., Merrell, W. J., Nadeau, J. H., Wood, A. J. J. Low sodium intake corrects abnormality in beta-adrenoceptor mediated vasodilation in patients with hypertension: correlation with beta-receptor funcion in vivo. Clin. Pharmacol. Ther., 48:87–95, 1990

[168]   Yarnell, J. W. G., Elwood, P. C., Sweetnam, P. M., Fehily, A. M., Rogers, S., Burr, M. L., James, K. S., Beswick, A. D., et al. Caerphilly and Speedwell collaborative heart disease studies. J. of Epidem. and Comm. Health, 38:259–262, 1984

[169]   Epidemiological studies of cardiovascular diseases. The Caerphilly and Speedwell prospective heart disease studies. Technical report, MRC Epidemiological Unit, 1991

[170]   Mattu, R. K., Needham, E. W., Galton, D. J., Frangos, E., Clark, A. J., Caulfield, M. A DNA variant at the angiotensin-converting enzyme gene locus associates with coronary artery disease in the Caerphilly Heart Study. Circulation, 91:270–274, 1995

[171]   McGraw, D. W., Forbes, S. L., Kramer, L. A., Liggett, S. B. Polymorphisms of the 5’ leader cistron of the human β2-adrenergic receptor regulate receptor expression. J. Clin. Invest., 102(11):1927–1932, December 1998

[172]   Tabor, S., Richardson, C. C. A single residue in DNA polymerases of Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxynucleotides. Proc. Natl. Acad. Sci. USA, 92:6339–6343, 1995

[173]   Kornberg, A., Baker, T. DNA Replication. W. H. Freeman and Company, New York, NY, 2nd edition, 1992

[174]   Tabor, S., Richardson, C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase: effect of pyrophosphorolysis and metal ions. J. Biol. Chem., 265:8322–8328, 1990

[175]   Rosenblum, B. B., Lee, L. G., Spurgeon, S. L., Khan, S. H., Menchen, S. M., Heiner, C. R., Chen, S. M. New dye-labeled terminators for improved DNA sequencing patterns. Nucl. Acids Res., 25:4500–4504, 1997

[176]   Terwilliger, J. D., Ott, J. Handbook of genetic linkage. John Hopkins University Press, Baltimore and London, 1994

[177]   Terwilliger, J. D. A powerful likelihood method for the analysis of linkage disequilibrium between trait loci and one or more polymorphic marker loci. Am. J. Hum. Genet., 56:777–787, 1995

[178]   Cooper, R., Rotimi, C., Ataman, S. The prevalence of hypertension in seven populations of West African origin. Am. J. Public Health, 87(2):160–168, 1997

[179]   Crews, D. E., Mancilha-Carvalho, J. J. Correlates of blood-pressure in Yanomami Indians of northwestern Brazil. Ethnic. Dis., 3(4):362–371, 1991

[180]   Harper, G. J., Crews, D. E., Wood, J. W. Lack of age-related blood pressure increase in the Gainj, Papua Neuginea: Another low blood pressure population. Am. J. Hum. Biol., 6(1):121–122, 1994

[181]   Stamler, J., Rose, G., Elliott, P., Dyer, A., Marmot, M., Kesteloot, H., Stamler, R. Findings of the international cooperative INTERSALT study. Hypertension, 17(Suppl. 1):9–15, January 1991

[182]   Crews, D. E. Association of body habitus with blood pressure do not vary across obese and lean populations. Am. J. Hum. Biol., 10(1):120, 1998

[183]   Hunt, S. C., Hopkins, P. N., Williams, R. R. Blood pressure: Genetics and mechanisms. In: V. Fuster, R. Ross, E. J. Topol (eds.), Artherosclerosis and Coronary Artery Disease, pages 209–235. Lippincott-Raven, 1996

[184]   Krieger, H., Morton, N. E., Raol, D. C. Familial determinants of blood pressure in northeastern Brazil. Hum. Genet., 53:415–418, 1980

[185]   Hunt, S. C., Hasstedt, S. J., Kuida, H., et al. Genetic heritability and common environmental components of resting and stressed blood pressure, lipids, and body mass index in Utah pedigrees and twins. Am J. Epidemiol., 129:625–638, 1989

[186]   Perusse, L., Rice, T., Bouchard, C., et al. Cardiovascular risk factors in a French-Canadian population: Resolution of genetic and familial environmental effects on blood pressure by using extensive information on environmental correlates. Am. J. Hum. Genet., 45:240–251, 1989

[187]   Rice, T., Vogler, G. P., Perusse, L., et al. Cardiovascular risk factors in a French-Canadian population: Resolution of genetic and familial environmental effects on blood pressure using twins, adoptees, and extensive information on environmental correlates. Genet. Epidemiol., 6:571–588, 1989

[188]   Harrap, S. B. An appraisal of the genetic approaches to high blood pressure. J Hypertens., 14(suppl. 5):S111–S115, 1996

[189]   Hingorani, A. D., Brown, M. J. Identifying the genes for human hypertension. Nephrol. Dial. Transplant., 11:575–586, 1996

[190]   Macmahon, S., Peto, R., Cutler, J., et al. Blood pressure, stroke and coronary artery disease part I: prolonged differences in blood pressure - evidence from nine prospective observational studies corrected for regression dilution bias. Lancet, 335:765–774, 1990

[191]   Krushkal, J., et al. Linkage and association of adrenergic and dopamine receptor gene in the distal portion of the long arm of chromosome 5 with systolic blood pressure variation. Hum. Mol. Gen., pages 1379–1383, 1998

[192]   Reimann-Weber, A., Horwath, J., Höglinger, A., Binder, A., Kotanko, P., Kenner, T., Skrabal, F. Charakterisierung von Allelen des humanen β2 Adrenozeptors. Nieren- und Hochdruckkrankheiten, 23:S246–249, 1994

[193]   Svetkey, L. P., Timmons, P. Z., Emovon, O., Anderson, N. B., Preis, L., Chen, Y. Association of hypertension with the β2 and α2c10 adrenergic receptor genotype. Hypertension, 27:1210–1215, 1996

[194]   Timmermann, B., Rune, M., Luft, F. C., Gerdts, E., Busjahn, A., Omvik, P., Guo-Hua, L., Schuster, H., Wienker, T. F., Hoehe, M., Lund-Johansen, P. β2 adrenoceptor genetic variation is associated with genetic predisposition to essential hypertension: the Bergen Blood Pressure Study. Kidney Int., 53:1455–60, 1998

[195]   Reihsaus, E., Innis, M., MacIntyre, N., Liggett, S. B. Mutations of the gene encoding for the β2 adrenergic receptor in normal and asthmatic subjects. Am. J. Respir. Cell. Mol. Biol., 8:334–339, 1993

[196]   Liggett, S. B. Functional properties of the human β2-adrenergic receptor polymorphisms. News Physiol. Sci., 10:265–273, 1995

[197]    Green, S. A., Turki, J., Innis, M., Liggett, S. B. Amino-terminal polymorphisms of the human β2 adrenergic receptor impart distinct agonist-promoted regulatory properties. Biochemistry, 33:9414–9419, 1994

[198]   Green, S. A., Cole, G., Jacinto, M., Innis, M., Liggett, S. B. A polymorphism of the human β2 adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem, 268:23116–23121, 1993

[199]   Green, S. A., Turki, J., Bejarano, P., Hall, I. P., Liggett, S. B. Influence of β2 adrenergic receptor genotypes on signal transduction in human airway smooth muscle cells. Am. J. Respir. Cell. Mol. Biol., 13:25–33, 1995

[200]   Liggett, S. B. Polymorphisms of the β2-Adrenergic Receptor and Asthma. Am. J. Respir. Crit. Care Med., 156(4):S156–S162, 1997

[201]   Lang, C. C., Stein, C. M., Brown, R. M., Deegan, R., Nelson, R., He, H. B., Wood, M., Wood, A. J. Attenuation of isoproterenol-mediated vasodilatation in blacks. N. Engl. J. Med., 333:155–160, 1995

[202]   Hutchinson, J., Crawford, M. H. Genetic determinants of blood pressure level among the Black Caribs of St. Vincent. Hum. Biol., 53:453–466, 1981

[203]   Rahman, S. U., Quing, F., Rhodes, C. G., Kotanko, P., Binder, A., Ind, P. W., Jones, T., Hughes, J. M. B. Quantification of pulmonary β adrenergic receptor (β-adrenoceptor) downregulation in vivo with PET and correlation with functional tachyphylaxis and β-adrenoceptor genotypes. Eur. Resp. J., 9(suppl 23):271s, 1996

[204]   Turki, J., Pak, J., Green, S. A., Martin, R. J., Ligget, S. B. Genetic polymorphisms of the β2 adrenergic receptor in nocturnal and nonnocturnal asthma. Evidence that Gly16 correlates with the nocturnal phenotype. J. Clin. Invest., 95:1635–1641, 1995

[205]   Gratze, G., Fortin, J., Labugger, R., Binder, A., Kotanko, P., Busjahn, A., Hoehe, M., Luft, F. C., Skrabal, F. β2 Adrenergic receptor variants affect resting blood pressure and agonist-induced vasodilatation in normotensive Caucasians. Hypertension, 33(6):1425–1430, 1999

[206]   Busjahn, A., Guo-Hua, L., Faulhaber, H., Rosenthal, M., Becker, A., Jeschke, E., Schuster, H., Timmermann, B., Hoehe, M. R., Luft, F. C. β2 Adrenergic receptor gene variations, blood pressure, and heart size in normal twins. Hypertension, 35:555–560, 2000

[207]   Busjahn, A., Faulhaber, H.-D., Viken, R. J., Rose, R. J., Luft, F. C. Genetic influences on blood pressure with the cold pressure test: a twin study. J. Hypertens., 14:1195–1199, 1996

[208]   Cockcroft, J. R., Gazis, A. G., White, D. J., Wheatley, A. P., Hall, I. P. Association of β2 adrenoceptor polymorphism with vascular reactivity in humans. Am. Heart Assoc., 1997

[209]   Stein, M., Deegan, R., Wood, A. J. Long term exposure to β2 receptor agonist specifically desensitizes β receptor mediated venodilation. Clin. Pharmacol. Ther., 54:178–183, 1993

[210]   Xie, H. G., Stein, C., Kim, R. B., Ziao, Z. S., He, N., Zhou, H. H., Gainer, J. V., Brown, N. J., Haines, J. L., Wood, A. J. Frequency of functionally important β2 adrenoceptor polymorphisms varies markedly among African-Americans, Caucasians and Chinese individuals. Pharmacogen., 9(4):511–516, 1999

[211]   Xie, H. G., Stein, C., Kim, R. B., Gainer, J. V., Sofowara, G., Dishy, V., Brown, N. J., Goree, R. E., Haines, J. L., Wood, A. J. Human β2 adrenergic receptor polymorphisms: no association with essential hypertension in black or white Americans. Clin. Pharmacol. Ther., 67(6):670–675, 2000

[212]   Candy, G., Samani, N., Norton, G., Woodiwiss, A., Radevski, I., Wheatley, A., Cockcroft, J., Hall, I. P. Association analysis of β2 adrenoceptor polymorphisms with hypertension in a Black African population. J. Hypertens., 18:167–172, 2000

[213]   Staessen, J., Fagard, R., Amery, A. The relationship between body weight and blood pressure. J. Hum. Hypertens., 2:207–217, 1988

[214]   Barbe, P., Millet, L., Galitzki, J., Lafontan, M., Berlan, M. In situ assessment of the role of β1-, β2-, and β3-adrenoceptors in the control of lipolysis and nutritive blood flow in human subcutaneous adipose tissue. Br. J. Pharmacol., 117:907–913, 1996

[215]   Large, V., Hellström, L., Reynisdottir, S., Lönnqvist, F., Eriksson, P., Lannfelt, L., Arner, P. Human β2 adrenoceptor gene polymorphisms are highly frequent in obesity and associate with altered adipocyte β2 adrenoceptor function. J. Clin. Invest., 100(12):3005–3013, 1997

[216]   Meirhaeghe, A., Helbecque, N., Cottel, D., Amouyel, P. Impact of polymorphisms of the human beta2-adrenoceptor gene on obesity in a French population. Int. J. Obes. Relat. Metab. Disord., 24(3):382–287, 2000

[217]   Marmot, M. G., Elliott, P., Shipley, M. J., Dyer, A. R., Ueshima, H., Beevers, D. G., Stamler, R., Kesteloot, H., Rose, G., Stamler, J. Alcohol and blood pressure: the INTERSALT study. Br. Med. J., 308(6939):1263–1267, 1994

[218]   Fuchs, F. D., Chambless, L. E., Whelton, P. K., Nieto, F. J., Heiss, G. Alcohol consumption and the incidence of hypertension: The Atherosclerosis Risk in Communities Study. Hypertension, 37(5):1242–1250, 2001

[219]   Ryan, J., Butler, P., Howes, L. G. Relationship between alcohol consumption, ambulatory blood pressure recordings and left ventricular mass. Blood Press., 10(1):22–26, 2001

[220]   Hughes, K., Leong, W. P., Sothy, S. P., Lun, K. C., Yeo, P. P. Relationships between cigarette smoking, blood pressure and serum lipids in the Singapore general population. Int. J. Epidemiol., 22(4):637–643, 1993

[221]   Fogari, R., Zoppi, A., Lusardi, P., Marasi, G., Villa, G., Vanasia, A. Cigarette smoking and blood pressure in a worker population: a cross-sectional study. J. Cardiovasc. Risk, 3(1):55–59, 1996

[222]   Demers, M., Vezina, M., Bernard, P. M., Lapointe, C. Relation between blood pressure and smoking in a population of Quebec workers. Arch. Mal. Coeur Vaiss., 81(6):775–780, 1988

© 2001 Alexander Binder