

Using Natural Language Processing (NLP) for Annotating German Clinical Narratives with SNOMED CT

Stefan Schulz, Markus Kreuzthaler, David Hashemian Nik, Larissa Hammer, Michaela Schneider

Institute for Medical Informatics, Statistics and Documentation Medical University of Graz, Austria

Introduction

2

Rationale for clinical text mining

- In most clinical information systems, existing structured data are
 - Incomplete, often only encompassing codes for major procedures and diagnoses
 - Biased, due to the purposes for which they were acquired (e.g.)
 - Error-prone, due to clinicians' lack of interest in structured documentation paralleling free-text narratives
- Factors complicating mining information from clinical narratives
 - Compact, telegram-style language, high frequency of short forms
 - Dynamic clinical jargon, not well represented by clinical terminologies
 - Highly contextualized
- How to bridge this gap?
 - Using SNOMED CT (supported by information models)
 - Using comprehensive language resources linked to SNOMED CT

Web frequencies of Fully Specified Names (FSNs)

- Frequency of FSNs and their translations
 - English: "Secondary malignant neoplasm of liver" 1,500 hits
 Swedish: "sekundär malign levertumör" 0 hits
 German: "Sekundäre maligne Neoplasie der Leber" 0 hits
- Frequency of popular synonyms
 - English: "Hepatic metastasis"
 - Swedish: "levermetastasen"
 - German: "Lebermetastasen"
- Similar findings in clinical corpora
 - e.g. no single occurrence of "Elektrokardiogramm" in 30k cardiology notes

46,600 hits 1,470 hits 13,600 hits

Term matching with localised SNOMED CT versions

- EU coordination & support action ASSESS CT, 2016 recommendations:
 - Term matching with localised SNOMED CT versions insufficient
 - Fully Specified Names / Preferred Terms: poor coverage of clinical jargon
 - Compared to International English SNOMED CT, which contains synonyms
 - Recommends user interface terminologies linked to SNOMED CT
- Characteristics of (user) interface terminologies
 - Capture the language actually used by clinicians / laypersons
 - Bottom-up instead of top-down approach
 - Use cases: term retrieval, value set creation, NLP

Resource

German-language interface terminology

- Low-resource activity initiated 2014 (senior terminologist, 3 medical students)
- Automated generation of German terms out of a core vocabulary with humancurated machine translations (single-word and short-term) extracted from English SNOMED CT descriptions. Enrichment by synonyms as a key activity, using n-gram hit lists extracted from clinical corpora
- Natural-language generator produces variants and combinations, including single-word compounds. No translation of FSN, no term preferences
- Scoring according to occurrence and frequency in reference corpora and term collections, lexical patterns and anti-patterns
- Filtered version for NLP (max 6 tokens, minimization of ambiguities)

Hashemian Nik, D., et al. (2019). Building an Experimental German User Interface Terminology Linked to SNOMED CT. Stud Health Technol Inform, 264:153-157

Core terminology

SNOMED

English	L Count German 1	German 2	German 3	German 4
burn	1 1264 Brandverletzung NN F	Brandwunde NN F	Verbrennung NN F	
normal	1 1264 normales JJ	normenhaftes JJ		
ankle	1 1254 Knöchel NN M			
wrist	1 1251 Handgelenk NN N			
drug	1 1244 Wirkstoff NN M	Arznei NN F	Arzneimittel NN N	Droge NN F
second	1 1244 zweites JJ	Sekunde NN F	Sekunden-	%VOID% 2. %VOID%
uncertain	1 1227 unsicheres JJ			
abdominal	1 1222 abdominales JJ	Bauch-	abdominelles	
membrane	1 1210 Membran NN F			
liver	1 1207 Hepar NL N	Leber NN F		
microgram	1 1202 %VOID% μg %VOID%	Mikrogramm NN N	Mikrogramm NL N	
middle	1 1193 mittleres JJ	Mitte NN F	Mittel	
ulcer	1 1180 Ulzeration NN F	Ulkus NN N	Geschwür NN N	
upper limb	2 1180 oberes JJ Extremität NN F	Arm NN M	oberes JJ	OE NL F
			Gliedmaße NN F	
fluoroscopic	1 1171 Durchleuchtungs-	durchleuchtungsgestütztes JJ	fluoroskopisches JJ	
effect	1 1170 Effekt NN M	Auswirkung NN F	Wirkung NN F	Folge NN F
service	1 1158Service NN M	Dienst NN M	Service NN N	
vehicle	1 1154 Fahrzeug NN N			
external	1 1149äußeres JJ	externes JJ	auswärtiges JJ	
internal	1 1149 inneres JJ	internes JJ	internistisches JJ	
of foot	2 1149 des Fußes	_Fuß		Q

Scored interface terminology

	SNOMED ID	Score	English FSN	German Interface Term
9	9451000119105	0.833	Cerebral infarction due to stenosis of carotid artery (disorder)	Hirninfarkt verursacht durch Stenose der A. carotis
9	9451000119105	0.833	Cerebral infarction due to stenosis of carotid artery (disorder)	Hirninfarkt verursacht durch Stenose der A. karotis
9	9451000119105	0.833	Cerebral infarction due to stenosis of carotid artery (disorder)	Schlaganfall wegen Stenose der Halsschlagader
9	9451000119105	0.833	Cerebral infarction due to stenosis of carotid artery (disorder)	Insult wegen Stenose der Halsschlagader
9	9451000119105	0.833	Cerebral infarction due to stenosis of carotid artery (disorder)	Schlaganfall wegen Karotisstenose
9	9451000119105	0.833	Cerebral infarction due to stenosis of carotid artery (disorder)	Insult wegen Karotisstenose
9	9451000119105	0.800	Cerebral infarction due to stenosis of carotid artery (disorder)	Gehirninfarkt verursacht durch Verengung der Halsschlagader

Experiment

Comparison English - German

SNOMED CT EXPO 2020 Virtual Conference October 8-9

- Terminologies
 - Complete March 2020 International Version Description table: 1.2 M active entries
 - NLP extract of German Interface Terminology: 1.8 M entries
- ASSESS-CT parallel corpus
 - Snippets of clinical documents, different clinical specialties and source languages
 - On average 3650 words per language
 - English, Dutch, Swedish and French versions annotated by terminology experts with SNOMED CT (2015)
 - Reference standards: pooled (all annotations), English annotations only
- NLP system
 - Averbis Health Discovery for German and English (www.averbis.com)

Miñarro-Giménez, J.A., et al. (2018). Qualitative analysis of manual annotations of clinical text with SNOMED CT. PLoS One. Dec 27:3(12)

Results

Term detection English - German

- Differences not significant
- Reported inter-annotator agreement 0.4 (Krippendorff's Alpha)
- Pre-coordinated concepts privileged by annotation guidelines

Discussion & Conclusions

F-values not satisfactory

- Known issues with terminology grounding of clinical texts
 - Not specific to SNOMED CT (cf. ASSESS CT report)
 - Fine-grained conceptual distinctions in large terminologies
 - Ambiguous terms, particularly acronyms and elliptic expressions ("fundus")
- Pre coordination vs. post-coordination
 - Text: "The lateral epicondyle of the left elbow was broken"
 - Human coders: 208271008 |Closed fracture distal humerus, lateral epicondyle
 - Machine: 72704001 |Fracture + 73451009 |Structure of lateral epicondyle of humerus + 7771000 |Left (qualifier value)|
- How to improve?
 - Symbolic reasoning: exploiting defining axioms of SNOMED CT concepts
 - Neural ML: exploiting phrase-level similarities; short form expansion + disambiguation

Encouraging for interface terminology approach

- German interface terminology behaves as well on German texts as English SNOMED CT descriptions on English text
 - Remarkable due to absence of German SNOMED CT translation and low-resource terminology-building approach
 - Puts the benefits of the "traditional" terminology translation process into perspective
 - Example Swedish SNOMED CT translation: > 8 M €, but much lower term matching rate compared to English on same corpus (cf. ASSESS-CT)
- Conclusion
 - At least for NLP: Interface terminology construction more cost-effective
 - Independent of language: still a long way to go to really satisfactory text mining results of real-world clinical texts

SNOMED International Miñarro-Giménez, J.A., et al. (2019) Quantitative analysis of manual annotation of clinical text samples. Int J Med Inform.: 123:37-48

Thank you for your attention

StefanMarkusDavidLarissaMichaelaSchulzKreuzthaler Hashemian-NikHammerSchneider

Contact: stefan.schulz@medunigraz.at