

CA COST Action CA15205 Gene Regulation Ensemble Effort for the Knowledge Commons

Gene regulation ontology (GRO) Follow up

Jesualdo Fernandez Breis¹ José Antonio Vera Ramos^{1,2} Stefan Schulz²

¹ University of Murcia, Spain

² Medical University of Graz, Austria

GRO - state before Malta Workshop

- Created 2008 within EU BootStrep
- Not maintained for a long time
- Available on BioPortal (OWL)
- URIs used by other projects (ISA, Kino, SYN)
- 2016 / 17 Revisited and revised for GREEKC
 - Alignment with upper-level ontology
 - Moderate content additions and modifications

Ontology metrics:	
Metrics	
Axiom	3213
Logical axiom count	1165
Declaration axioms count	631
Class count	560
Object property count	37
Data property count	9
Individual count	4
DL expressivity	SRIF(D)
Class axioms SubClassOf	924
EquivalentClasses	77
DisjointClasses	102
GCI count	11
Hidden GCI Count	13
Object property axioms	
SubObjectPropertyOf	25
EquivalentObjectProperties	0
InverseObjectProperties	16
DisjointObjectProperties	0
FunctionalObjectProperty	0
InverseFunctionalObjectProp	erty0
TransitiveObjectProperty	6

GRO – decision @ Malta Workshop

- GRO development to be discontinued
- GRO content should be migrated to other ontologies
- More general: ontological content relevant for gene regulation should be covered by existing ontologies
- Rationale
 - Avoid proliferation of bio-ontology resources
 - Concentrate efforts on well-curated core ontologies

GRO: post-Malta agenda

- Analyse GRO content
- Identify gaps
- Identify overlaps
- Elaborate process for
 - GR ontological content acquisition
 - GRO content migration: identification of suitable target ontologies

Acquisition of new GR terms

- Literature mining: Harvesting word
 n-grams (1-4) from MEDLINE 2012-17:
 - GR query: Regulatory Sequences, Nucleic Acid [MeSH]
 - NON-GR query: Base sequence [MeSH] NOT Regulatory Sequences, Nucleic Acid [MeSH]
- Ordering by salience (frequency and GR/NON-GR ratio): 2031 n-grams
- Manual review (200 terms):
 - 31% valid terms (no variants or collocations)
 - 11% in GRO
 - 41% in OGG (Ontology of Genes and Genomes)

GRO deconstruction

- Purposes:
 - Find new "home" for GRO classes
 - Align existing GRO terms with other ontologies
 - Select most "popular" or suited target ontologies
 - Preference: OBO ontologies, NCBI taxonomy
 - To avoid: Ontologies not obeying OWL semantics (NCBI)
 - Identify current use of GRO URIs
 - Assure persistence of currently used GRO URIs
 - Preserve axioms attached to GRO URIs
- More details in afternoon session:
 "15:00 16:00 Defining concepts essential to Gene Regulation"

Alignment: current state https://goo.gl/64XaTt

GRO Class	Candidate ontologies	Issues	Resolution	Criteria	Axioms
RNA coding gene	SIO ('functional rna coding gene')	Class reused by SYN	Use class in SIO	Only 1 candidate ontology	btl2:is bearer of some ('genetic information' and (btl2:represents only RNA))
gene region	-	Class only in GRO, reused by SYN	Reconstruct	-	btl2:is part of some gene
intron on DNA	SO, SIO	Class reused by SYN	Use class in SO (synonym: 'intron')	Class in SO is a little bit more reused	
operon	SIO, SO	Class reused by SYN	Use class in SIO	Class in SO is a little bit more reused	btl2:has part' some gene and 'btl2:has part' some operator and 'btl2:has part' some promoter
ORF	SO	Class reused by SYN	Use class in SO	Only 1 candidate ontology	btl2:is bearer of some ('genetic information' and (btl2:represents only protein))
poly-A signal sequence	-	Class only in GRO, reused by SYN	Reconstruct	-	
protein binding site of DNA		Class only in GRO, reused by SYN	Reconstruct		btl2:is patient in' some 'binding of protein to protein binding site of DNA'
transcription factor binding site of DNA		Class only in GRO, reused by SYN	Reconstruct		btl2:is patient in' some 'binding of TF to TF binding site of DNA'
enhancer	SO, OGI	-	Use class in SO	Class in SO is reused	btl2:is patient in' some 'binding of transcription activator to enhancer'

- 198 GRO classes checked, 74 not in other ontologies
- Most popular ontologies: SO, GO, ChEBI, FMA, PATO, BTO, SIO

Next steps

- Complete alignment table
 - Currently done by Stefan and Jose
 - Needed: reviewers
- Devise migration strategy:
 - GRO URIs
 - GRO axioms
- Manage content inclusion requests
 - Contact curators of other ontologies
- GREEKG: "terminology observatory" role to assure high coverage of GR concepts