

Workshop on Ontologies and Data in Life Sciences, Sep 29-30, Halle (Saale), Germany

Ontological interpretation of biomedical database annotations

Filipe Santana da Silva¹, Ludger Jansen², Fred Freitas¹, Stefan Schulz³

¹Centro de Informática (CIn), Universidade Federal de Pernambuco (UFPE), Recife, Brazil ²Institut für Philosophie, Universität Rostock, Germany ³Institut für Medizinische Informatik, Statistik und Dokumentation, Medizinische Universität Graz, Austria

Biological Databases and Bio-Ontologies

Two worlds: Bio-DBs

- How are they related to each other?
- Can their content be expressed by a unified model of meaning?
- Is database content of ontological nature?
- Can OWL be used as a language to express
 - bio-ontology content
 - bio-database structure
 - bio-database content
- Which is the added value?

Biological Databases and Bio-Ontologies

Two worlds: Bio-DBs

- Store summarized results of laboratory experiments
- Classical database structure
- Values:
 - Numeric
 - Textual
 - Symbolic (codes from ontologies)

- Provide definitions
- Provide axioms that are universally true
- Obey formal semantics
- Main use case:
 - annotation of biological
 - database entries

Example – tabular Bio-DB structure

ID	PR Protein	PR Gene	Organism (NCBI Tax)	GO Biological Process	GO Molecular Function	GO Cellular componente	Ensembl ID	Ensembl Phenotype
F1MEW4	CBS	CBS	Bos tautus	blood vessel remodelling;	Cysthationine beta- synthase;	cytoplasm;	ENSBTAT0000000184;	No phenotype associated
Q99707	MS	MS	Homo sapiens	cobalamin metabolic process;	cobalamin binding;	cytoplasm;	ENST000000366577; ENST000000533889	Neural tube defect.; Megaloblastic anemia;
F1RF82	MTHFR	MTHFR	Sus scrofa	homocysteine metabolic process;	modified amino acid binding;	cytosol	ENSSSCT00000003805	No phenotype associated
Q93088	BHMT	BHMT	Homo sapiens	amino acid betaine catabolic process;	zinc ion binding;	protein complex;	ENST00000274353	Liver tumor Coronary artery disease;

Example – tabular Bio-DB structure

ID	PR Protein	PR Gene	Organism (NCBI Tax)	GO Biological Process	GO Molecular Function	GO Cellular componente	Ensembl ID	Ensembl Phenotype
F1MEW4	CBS 'is in	CBS cluded in'	Bos tautus	blood vessel remodelling;	Cysthationine beta- synthase;	cytoplasm;	ENSBTAT0000000184;	No phenotype associated
Q99707	MS 'is incl	MS <u>'is</u> uded in'	Homo sapiens included in '	cobalamin metabolic process; 'is	cobalamin binding; included in'	cytoplasm;	ENST000000366577; ENST000000533889	Neural tube defect.; Megaloblastic anemia;
F1RF82	MTHFR	MTHFR 'is part	Sus scrofa	homocysteine metabolic process;	modified amino acid binding;	cytosol	ENSSSCT00000003805	No phenotype associated
Q93088	BHMT	BHMT	Homo sapiens	amino acid betaine catabolic process;	zinc ion binding;	protein complex;	ENST00000274353	Liver tumor Coronary artery disease;
'includes'								

Example – tabular Bio-DB structure

more abstract:

- a database record informs about experimental evidence that:
 - Proteins of the type Prot1
 - participate in Processes of type BProc₁... BProc_k within organisms of type Org₁
 - are active in cellular components of type CComp₁ or CComp₂ or ...
 CComp_x within organisms of type Org₁
 - participate in Processes that have small molecules of type Mol1, Mol₂...Mol_v as outcome
 - within organisms of type Org₁ if dysfunctional Org₁ has dispositions to develop the phenotypes (disorders) Phen₁...Phen_z

This information is not explicitly contained in the database – it is implicitly shared by database users and curators

Ontological framework

	Information entities	Domain entities
Classes (T-Box)	 Bio-DB Database record Data item 	 Homo sapiens Megaloblastic anemia Cobalamin binding Methionin synthase ()
Individuals (A-Box)	 Uniprot Ensembl Database record about Methionin Synthase in Homo Sapiens Data item, such as "cobalamin binding" in this record 	 John Doe, of which tissue is stored in a biobank and analysed in a lab John's megaloblatic anemia A cobalamin binding process observed in the lab within a tissue sample from John a dysfunctional Methionin synthase protein molecule in John's tissue

Denotation

	Information entities	Domain entities
Classes (T-Box)	 Bio-DB Database record Data item individual to class 	 Homo sapiens Megaloblastic anemia Cobalamin binding Methionin synthase ()
Individuals (A-Box)	 rot Ensembl Database record about Methionin Synthase in Homo Sapiens Data item, such as "cobalamin binding" in individual to individual 	 John Doe, of which tissue is stored in a biobank and analysed in a lab John's megaloblatic anemia A cobalamin binding process observed in the lab within a tissue sample from John a dysfunctional Methionin synthase protein molecule in John's tissue

Case 1: database entry represents individuals

Multiple defined subclasses

Multiple defined subclasses

'Prot_i Dysf in Org_{i1} with Phen _{i1,...,il}' equivalentTo
'Prot_i Dysf in Org_{i1} and 'is part of' some (Org_{i1} and includes some Phen_{i1,...,im})
'Prot_i in Org_{i1} in BProc _{i1,...,il}' equivalentTo 'Prot_i in Org_{i1}' and 'is participant in' some BProc_{i1,...,im}
'Prot_i in Org_{i1} in CComp _{i1,...,il}' equivalentTo 'Prot_i in Org_{i1} and 'is included in' some CComp_{i1,...,im}
'Prot_i in Org_{i1} with Mol _{i1,...,il}' equivalentTo

'Prot_i in Org_{i1} ' and 'is participant in' some (Process and 'has participant' some $Mol_{i1,...,im}$)

' Org_{i1} with $Prot_i$ ' equivalentTo Org_{i1} and 'has part' some $Prot_i$ ' Org_{i1} with $Prot_i$ Dysf' equivalentTo Org_{i1} and 'has part' some ' $Prot_i$ Dysf' ' Org_{i1} with $Phen_{i1,...,im}$ and $Prot_i$ Dysf' equivalentTo ' Org_{i1} with $Prot_i$ Dysf' and includes some $Phen_{i1,...,il}$

Querying: A-box query for individuals

	Information entities	Domain entities
Classes (T-Box)	R ₁	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Individuals (A-Box)	r btl2:rep	presents p1 c1 pr1 pr1 pr1

Querying: T-box query for subclasses

	Information entities	Domain entities
Classes		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Individuals	btl2:represe	ents rdf:Type only

Querying: T-box query for subclasses

	Information entities	Domain entities
Classes		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Two step D Does s if not: else: d bioont	OL query: ubclass exist? no database entry etermine superclass from ology	m

Competency questions

(Q1) Which biological processes have proteins of the kind *Prot_i* as participants?

*BProc*₁ and ('has participant' some *Prot*_i)

(Q2) In which cellular locations is Prot_i active in organisms of the type Org₁?

'Cellular component' and (**'is included in**' some *Org*₁) and (**includes** some *Prot*_{*i*})

(Q3) Which proteins are involved in processes of the type BProc in organisms of the type Org_1 ?

Protein and (' is participant in' some BProc₁) and ('is included in' some Org₁)

Evaluation (one database record)

Model	Q1	Q2	Q3	Classes	Individuals	Axioms/ Assertions
A- Box	bp1001, bp2001, bp3001	cc1001, cc2001, cc3001	p1004	24	51	207
T- Box	BProc ₁	CComp ₁	Prot _i	68	0	149

Discussion (I)

- Both modelling solutions:
 - highly productive
 - scaling problems to be expected
- A-Box solution (prototypical individuals):
 - A-box reasoning more costly
 - Makes existential assumptions
- T-Box solution (multiple subclasses)
 - Theoretically allows non-referential entries
 - Simplified model: EL++

Discussion (II)

- Do biological database refer to ontological content?
 - No "real" universal statements on biological entities
 - Even no existential assumption
 - Dispositional statements to be discussed (see paper)
- Exercise best described as ontological representation of referring individuals
- Possible use case: non-disruptive querying of Bio-DBs where axioms of the annotation ontologies need to be explored

Conclusion

- Four ontological approaches IND, SUBC, DISP and HYB
 - Structure and content of BIO-DBs
- Solution:
 - Expressiveness, DB retrieval and retrieval based on DL queries
 - Interpretation:
 - Denoted entities as prototypical individuals
 - Creation of defined subclasses
 - Database content as reporting dispositions

Funding: This work was funded by *Conselho Nacional de Aperfeiçoamento de Pessoal de Nível Superior* (CAPES) 3914/2014-03 and *Conselho Nacional de Desenvolvimento Científico e Tecnológico* (CNPq) 140698/2012-4.