

Acquisition of Character Translation Rules for SNOMED CT Localizations

Jose Antonio Miñarro-Giméneza

Johannes Hellrich^b Stefan Schulz^a

^aInstitute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Austria ^bJena University Language and Information Engineering Lab Jena, Germany

Introduction

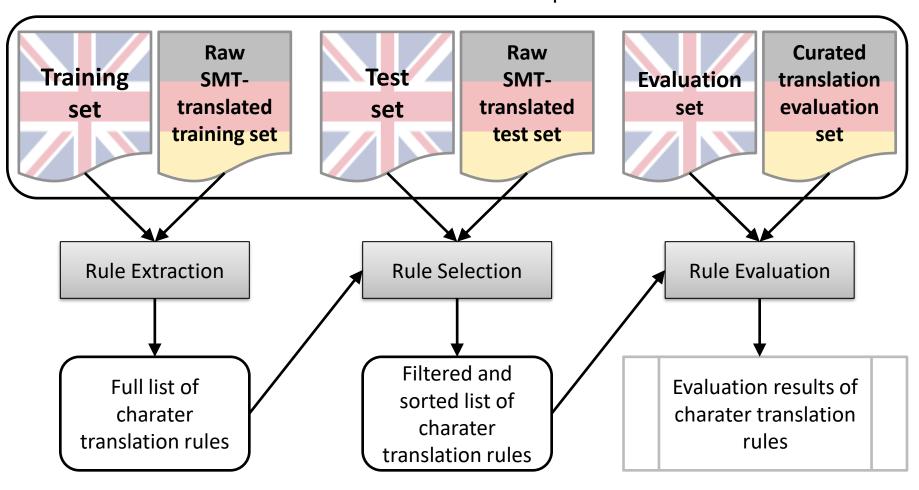
- Interoperability of EHR data across languages requires the translation of medical terminologies such as SNOMED CT.
- SNOMED CT is currently available fully or partially in English, Spanish, French, Danish, Dutch, Swedish.
- Mostly only preferred terms / FSN are translated: terminology mismatch with clinicians' language
- Human translation of SNOMED CT is costly
 - English SNOMED CT:
 - ~300,000 concepts
 - ~700,000 terms

Introduction

- Machine translation techniques in combination with manual curation could reduce the cost of producing term translations or localised entry terms.
- Statistical machine translation (SMT) systems are based on the existence of parallel texts to generate a translation model
- Rule-based translation systems are based on a set of translation rules.
- Medical terminologies contains many terms derived from Greek or Latin origins which are shared across languages.
 - Appendicitis → Appendizitis
 - Appedectomy → Appendektomie
- Osteosarcoma → Osteosarkom
- Cholesterol → Cholesterin

Character translation rules

- Appendicitis → Appendizitis
- Appedectomy → Appendektomie
- Osteosarcoma → Osteosarkom
- Cholesterol → Cholesterin


- Can such character translation ("transliteration") be learned from uncorrected machine-translated term lists?
- Can they be used for creating new localised terms in a terminology translation process?

Resources

- All single word types occurring in all descriptions of the international version of SNOMED CT (7/2013)
- Machine translated using Google Translate into German
- Reasons for non-translated words
 - Rare words (not enough training material)
 - English or Latin words in German source
 - Co-incidence of German and English words
- Gold standard: manually curated list of 29,790 translated Google translated words. 1:1 translation (most likely target word and inflectional form)

Methods

List of word translation pairs

Rule extraction

- Test all combinations of characters substitution between source and target word.
- Limit the total number of combinations by defining:
 - max and min allowed length of the substitution strings in the source and target word.
 - max length difference between source and target substitution strings.
- A rule is extracted when its improves the translation
- A rule improves a translation if Levenstheins' distance between the rule-translated word and the SMT translated word is lower than between the source word and the SMT translated word.

Rule Selection

- The set of extracted rules is tested to obtain the best rule list with highest improvement in the test dataset.
- The rules are grouped by the overlapping source substitution strings. For each group the one is selected that produces the highest number of translation improvements.
- The rank of selected rules is computed on:
 - Highest number of improved translations
 - Lowest number of deteriorated translations
 - 3. Highest number of words translated correctly

Overlapping group

- "ct" \rightarrow "kt"
- "vect" → "vekt"
- "ecto" → "ekto"
- "ectomy" → "ektomie"

Examples of charater translation rules EN→**DE**

Rank	Rule	Example
1	"ine_" → "in_"	"_Adenine_" → "_Adenin_"
2	"ate_" → "at_"	"_Fibrate_" \rightarrow "_Fibrat_"
3	"ia_" → "ie_"	"_Anemia_" → "_Anemie_"
4	"ide_" \rightarrow "id_"	"_Choride_" \rightarrow "_Chlorid_"
5	"sis_" → "se_"	"_Analysis_" → "_Analyse_"
6	"one_" \rightarrow "on_"	"_Deoxycortone_" \rightarrow "_Deoxycorton_"
7	"sm_" → "smus_"	"_Albinism_" → "_Albinismus_"
8	"ole_" \rightarrow "ol_"	"_Phenole_" → "_Phenol_"
9	"hy_" → "hie_"	"_Hypertrophy_" $ ightarrow$ "_Hypertrophie_"
10	"my_" → "mie_"	"_Gastrotomy_" \rightarrow "_Gastrotomie_"

Rule Evaluation

- Gold standard contains manually curated list of 29,790 translated single words.
- The selected and sorted list of rules is evaluated using the gold standard.
 - 1. Rule-translated words are obtained.
 - 2. Statistical machine translated (SMT) words are obtained using Google Translate.
 - 3. Levenstheins' edit distance is calculated between the ruletranslated words and the gold standard and also between the SMT words and the gold stardard.
 - 4. The calculated edit distances are compared.

Rule Evaluation

- A list of 286 rules was created
- Google translate produced 87% of correct translations
- Rule translations obtained 60% of correct translations
- The rule approach improved 55% of **not** correctly translated words by Google Translate
- The rule approach correctly translated 27% of **not** correctly translated words by Google translate.

Conclusions

- Character translation rules can be automatically obtained from SMT translated word lists
- Inflection and variability of words in target language
 (German) complicates the exact translation based on rules.
- The rule based approach cannot process words that do not share common roots.
- SMT produces better results than rule-based translations.
 However, character translation rules are promising add-ons to translate words that are not translated by SMT
 - "Long tail" of low frequency medical terms
- Interesting approach for closely related languages?