

Stefan Schulz Medical University of Graz (Austria)

purl.org/steschu



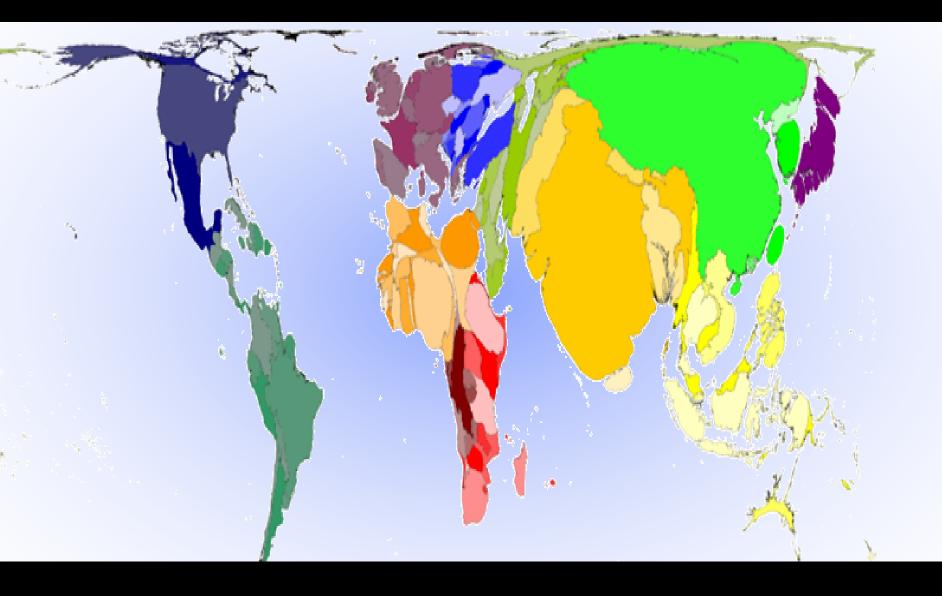
## Realism vs. Pragmatism

# Ontologies as sustainable knowledge representation artefacts

Workshop on knowledge management and the future of our society

> Trondheim, Norway, September 8<sup>th</sup>, 2014

#### **The Landscape of Representation**


| meaning of<br>domain terms                                                                         | Universal properties of<br>domain entities                              | of Contingent<br>characteristics of entities             |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------|
| "methanal" is<br>a synonym of<br>"formaldehyde"<br>"cell division" is<br>broader than<br>"mitosis" | of contain lipids"                                                      | "Ebola infections<br>are rare"<br>"adult humans have     |
|                                                                                                    | "the surgical removal<br>of a gallbladder is named<br>"cholecystectomy" | typically 32 teeth"<br>" Lmn-2 interacts<br>with Elf-2 " |
| "eau" is<br>French for<br>"water"                                                                  | "fungi a<br>"all brains not plan<br>develop inside<br>animals"          |                                                          |

#### TERMINOLOGY

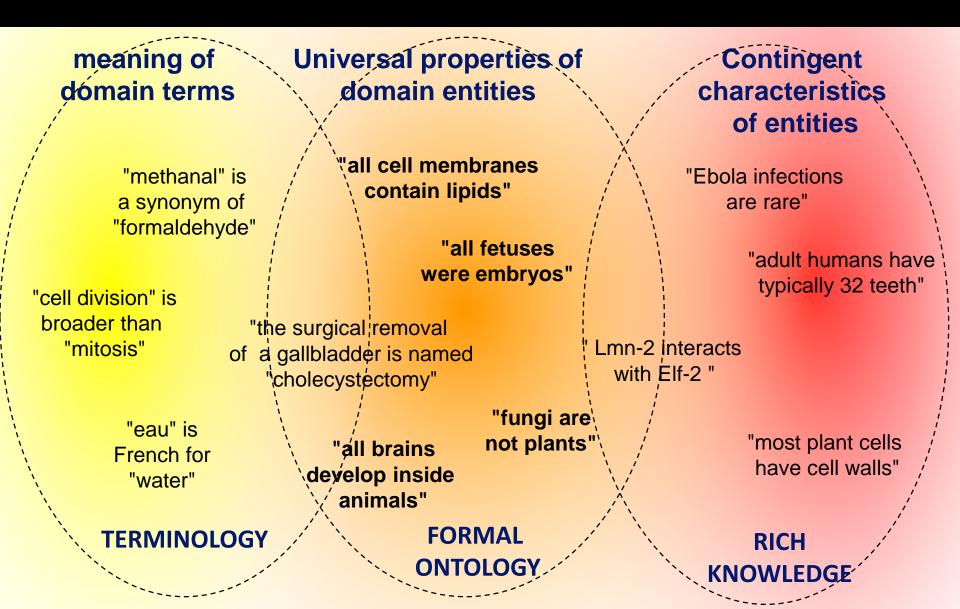
#### ONTOLOGY

#### **RICH KNOWLEDGE**

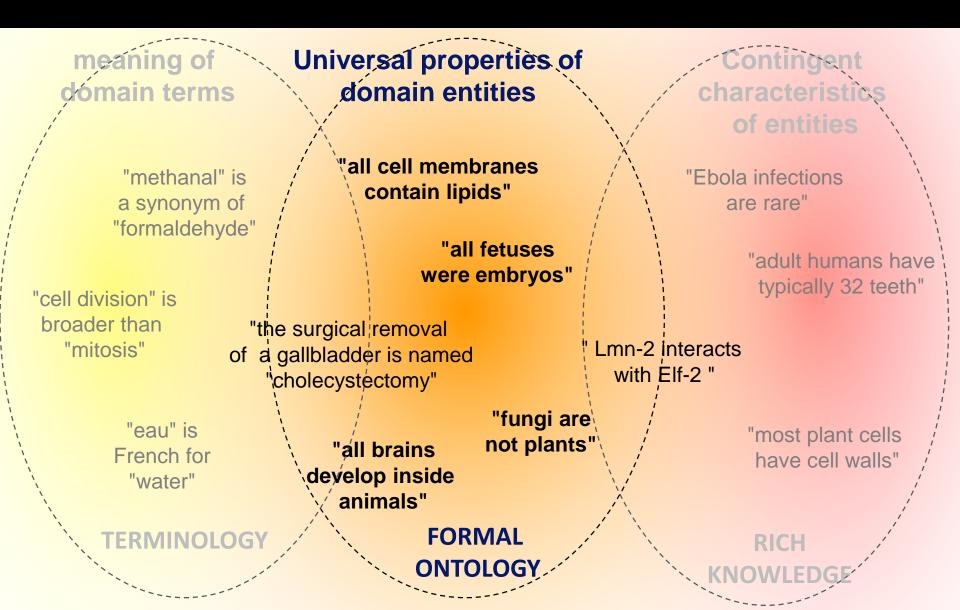
## **Redesigning the map**



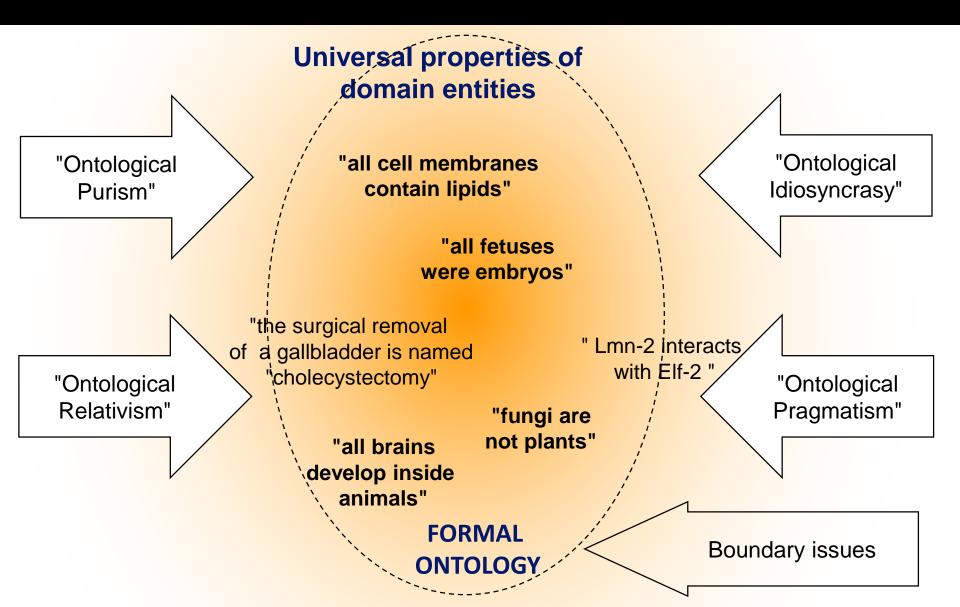
#### **Redesigning the map**


## RICH KNOWLEDGE

**ONTOLOGY** 


TERMINOLOGY

Alan Rector (2008):" very few interesting items of knowledge that are truly ontological..."Bill Woods (1975):"conceptual coat rack"


#### **Focusing on Formal Ontology**



#### **Focusing on Formal Ontology**



#### **Focusing on Formal Ontology**



#### **Ontological "Purism" (Smith / Ceusters)**



Source: Campaign: "You can always tell a place that uses Lexware"

### **Ontological "Purism" (Smith / Ceusters)**

- Ontologies represent universals (types) in reality
- The world is split into universals and individuals and there are objective criteria for this
- Everything is either a continuant or an occurrent
- Ontologies are independent of concrete applications
- Axioms in ontologies state what is universally true for all instances of a type
- Small set of relations
- Relations between continuant individuals are time-indexed
- First-order logics appropriate representation language

<sup>&</sup>lt;u>Smith B. Beyond Concepts: Ontology as Reality Representation. Proceedings of the International Conference on Formal</u> Ontology in Information Systems, 11, 2004: 39-50.

#### **Ontological Purism: Problems (I)**

- OGMS, based on BFO, distinguished:
  - Disorder" subclassOf Material object
  - Disease subclass of Disposition
  - Disease course" subclassOf Process
- Medical terms are ambiguous: How to represent "gastric ulcer"?
  - is a piece of anatomically altered stomach wall → material Object
  - is a process (ulceration)

#### **Ontological Purism: Problems (II)**

- BFO 2 uses FOL to introduce ternary relations between continuants
  - located-in (a, b,  $t_1$ ) AND located-in (b, c,  $t_1$ ) → located-in (a, c,  $t_1$ )
  - located-in (a, b,  $t_1$ ) AND located-in (b, c,  $t_2$ )  $\rightarrow$  ?
- FOL is undecidable
- In Description logics only two-valued relations (object properties)
  - located-in (a, b) AND located-in (b, c) → located-in (a, c)
     If transitive, leads to wrong entailments.
  - Otherwise, incomplete

## **Ontological Relativism (Noy / McGuinness)**



#### **Ontological Relativism (Noy / McGuinness)**

- Ontologies represent "shared conceptualizations"
- Ontologies + instances = knowledge bases
- Terminologies / vocabularies are kinds of (informal) ontologies
- Whether something is modeled as a class or an instance depends on granularity and context
- Ontologies are built to represent the knowledge needed for specific applications
- Ontology reuse is highlighted but no clear provisions for interoperability taken
- Upper-level ontology not explicitly recommended

Noy NF, McGuinness DL. Ontology Development 101: A Guide to Creating Your First Ontology. http://www.ksl.stanford.edu/people/dlm/papers/ontology101/ontology101-noy-mcguinness.html

#### **Ontological Relativism: problems**

- Ontologies as shared conceptualizations:
  - Things are represented how they are perceived / known, not as they are (philosophically: ontological realism)
  - Potentially contradictory representations of the same thing
- Example
  - Glucose instanceOf Hexose
  - What about L-Glucose?
- Terminologies, thesauri (e.g. UMLS, MeSH) are also understood as ontologies?
  - How to formally describe them?
  - If not, how to differentiate them?

## **Ontological Idiosyncrasy / Syncretism**



## **Ontological Idiosyncrasy / Syncretism**

- Unprincipled, naïve (undisciplined?) approach to ontologies
- Assumptions:
  - informal vocabularies or database schemes wrapped into a formal language (e.g. OWL) become ontologies
  - Everything which represents knowledge in the Semantic Web is an ontology
- The way an ontology is shaped depends on its specific purpose
- "A little semantics goes a long way"
- "Anything goes" with regard to upper-level classes and relations (their need is often questioned)

### **Ontological Idiosyncrasy / Syncretism: problems**

- Embedding modal, negative, or probabilistic notions. Example: NCI Thesaurus: *Ureter\_Small\_Cell\_Carcinoma* subclassOf
   Disease\_May\_Have\_Finding some Pain
- Improper co-ordinations

Calcium-Activated\_Chloride\_Channel-2 subClassOf Gene\_Product\_Expressed\_In\_Tissue some Lung and Gene\_Product\_Expressed\_In\_Tissue some Mammary\_Gland and Gene\_Product\_Expressed\_In\_Tissue some Trachea

 Weak or non-existing upper level and undefined primitives: Relies on implicit human language understanding. Barrier to shared conceptualizations. Examples:

- Unclear whether "animal" includes "human"
- Unclear whether events and processes are the same
- Unclear whether "part-of" ranges over all times

etc..

<u>Schulz S et al. The Pitfalls of Thesaurus Ontologization - the Case of the NCI Thesaurus.</u> AMIA Annu Symp Proc. 2010 Nov 13;2010:727-31.

### **Ontological pragmatism: the GoodOD approach**



#### **Ontological pragmatism: the GoodOD approach**

- Ontologies as formal systems (using OWL DL)
- Ontological engineering supported by
  - clearly defined upper-level categories
  - closed set of basic relations
  - constraining axioms
  - understandable labels
- Criteria of dividing between classes and individuals
- Aristotelian definitions (genus differentia)
- Naming conventions, design patterns and guidelines
- Upper ontology BioTopLite2
   <u>http://purl.org/biotop/btl2.owl</u>

<u>Schulz S, Boeker M. BioTopLite: An Upper Level Ontology for the Life Sciences. Evolution, Design and Application. In:</u> Furbach, U; Staab, S; editors(s). Informatik 2013. IOS Press; 2013

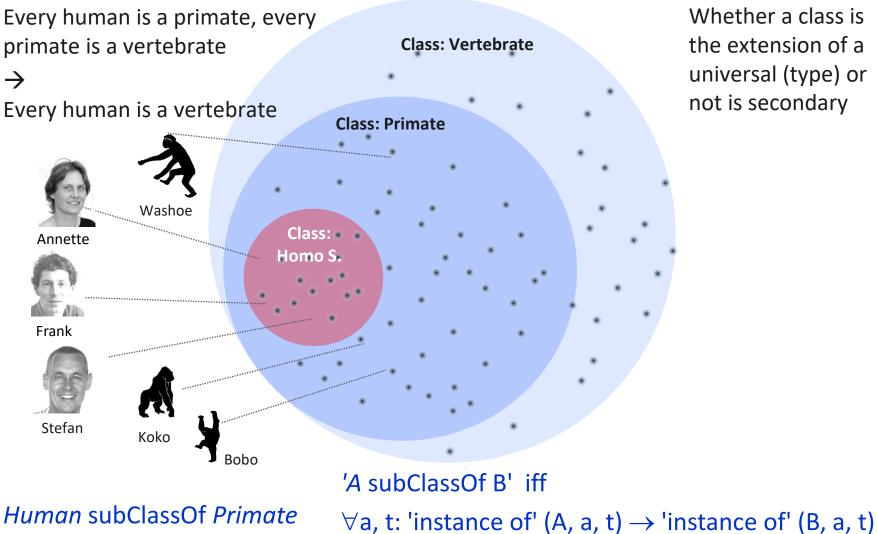
#### GoodOd – Good Ontology Design

#### Guideline on Developing Good Ontologies in the Biomedical Domain with Description Logics

URL: http://www.purl.org/goodod/guideline

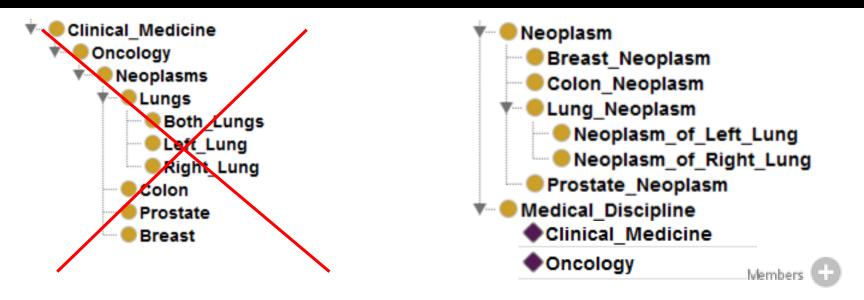
Version 1.0 December 2012

Send feedback to: martin.boeker@uniklinik-freiburg.de ludger.jansen@uni-rostock.de


Schulz S<sup>1,3</sup>, Seddig-Raufie D<sup>1</sup>, Grewe N<sup>2</sup>, Röhl J<sup>2</sup>, Schober D<sup>1</sup>, Boeker M<sup>1</sup>, Jansen L<sup>2</sup>

 <sup>1</sup>: Institute of Medical Biometry and Medical Informatics, University Medical Center Freiburg
 <sup>2</sup>: Institute of Philosophy, University of Rostock
 <sup>3</sup>: Department of Medical Informatics, University of Graz

11th December 2012


http://purl.org/goodod/guideline

#### **Class-individual distinction not discretionary**



Whether a class is the extension of a universal (type) or not is secondary

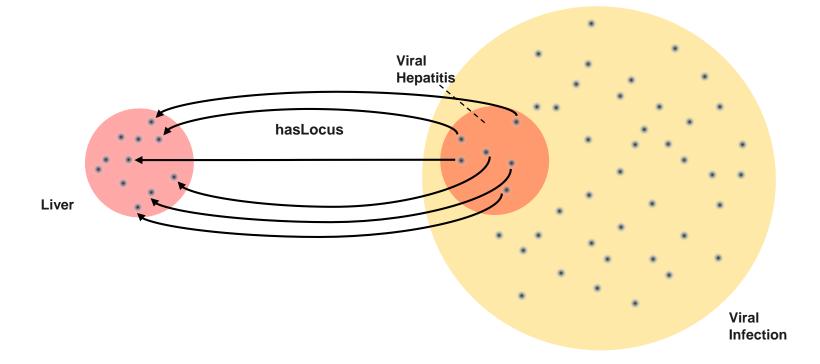
#### Intuitive hierarchies ≠ good taxonomies



FOL: $\forall x, t:$  'instance of' (X, x, t)  $\leftrightarrow$  'instance of' (Y, x, t)  $\Leftrightarrow$  $\forall t \neg \exists x:$  'instance of' (X, x, t)  $\land \neg$  'instance of' (Y, x, t)

OWL-DL: X subClassOf Y

X and not (Y): unsatisfiable


- Test : there is no neoplasms that is not an oncology
- there is no prostate that is not a neoplasm
- there is no oncology that is not a clinical medicine

Guarino N, Welty C. <u>Handbook on ontologies</u>, 2009 – Springer

Schober D et al. .Survey-based naming conventions for use in OBO Foundry ontology development. BMC Bioinformatics. 2009 Apr 27;10:125.

Labelling !

#### **Aristotelian Definitions do not permit exceptions**



FOL: $\forall x, t:$  'instance of' ('Viral hepatitis, x, t)  $\leftrightarrow$  'instance of' ('Viral infection', x, t) $\land \exists z:$  'instance of' (Liver, z, t)  $\land$  'is included in' (x, z, t)

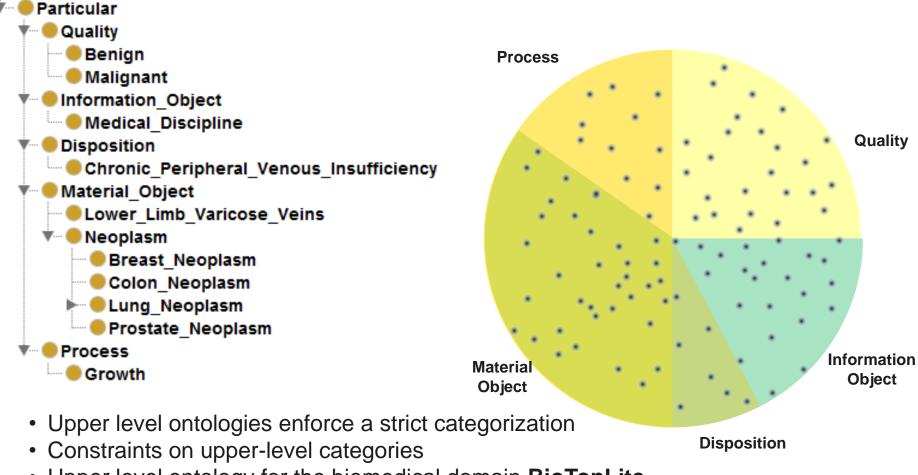
*OWL-DL: 'Viral Hepatitis'* equivalentTo *ViralInfection* and 'is included in' some Liver Test :

- There is no viral hepatitis that is not located in a liver
- There in no viral hepatitis that is not a viral infection

#### Always investigate the ontological commitment

Lung\_Neoplasm
 Neoplasm\_of\_Left\_Lung
 Neoplasm\_in\_both\_lungs
 Neoplasm\_of\_Right\_Lung
 Neoplasm\_in\_both\_lungs

- Which are exactly the instances?
- Does the label tell us what is meant?
- Is there an implicit context?

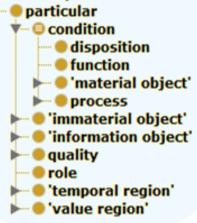

Disease
Chronic\_Peripheral\_Venous\_Insufficiency
Lower\_Limb\_Varicose\_Veins

Test :

- There is no neoplasm in both lungs that is not a neoplasm in the left lung OR There is no patient with neoplasm in both lungs that is not a patient with the neoplasm in the left lung
- There is no varicose vein in the lower limb that is not a chronic peripheral venous insufficiency OR There is no patient with varicose lower limb veins that is not a patient with a

chronic peripheral venous insufficiency

# Upper level ontologies partition the domain into disjoint and exhaustive categories




• Upper level ontology for the biomedical domain **BioTopLite** 

<u>Schulz S, Boeker M. BioTopLite: An Upper Level Ontology for the Life Sciences. Evolution, Design and Application. In:</u> Furbach, U; Staab, S; editors(s). Informatik 2013. IOS Press; 2013

## BioTopLite provides a small set of toplevel classes, relations, and axioms

#### **Toplevel Categories**



#### **Basic relations**



- includes
- 🛏 🖿 'is included in'
- 'is preceded by'
- 'is projection of'
- 'is represented by'
- participates in'
  - precedes
  - projects onto'
  - represents

- Precise formulations about generic and defining properties of basic categories of a domain
- Logical Framework (Description logics)
- OWL DL (Web Ontology Language) complete and decidable language - compromise between expressiveness and performance

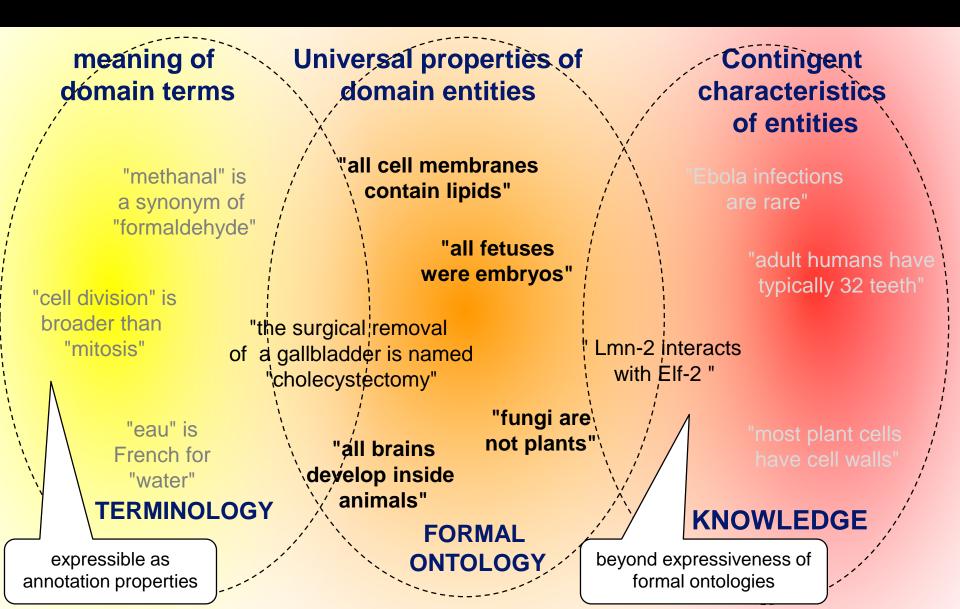
#### Constraining axioms

- 'has part' only process
- 'has participant' some Thing
- 'is bearer of' only 'process quality'
- is part of only process
- projects onto' only 'temporal region'
- projects onto' some 'temporal region'
- 'realization of' only disposition
- includes only (process or 'process quality')

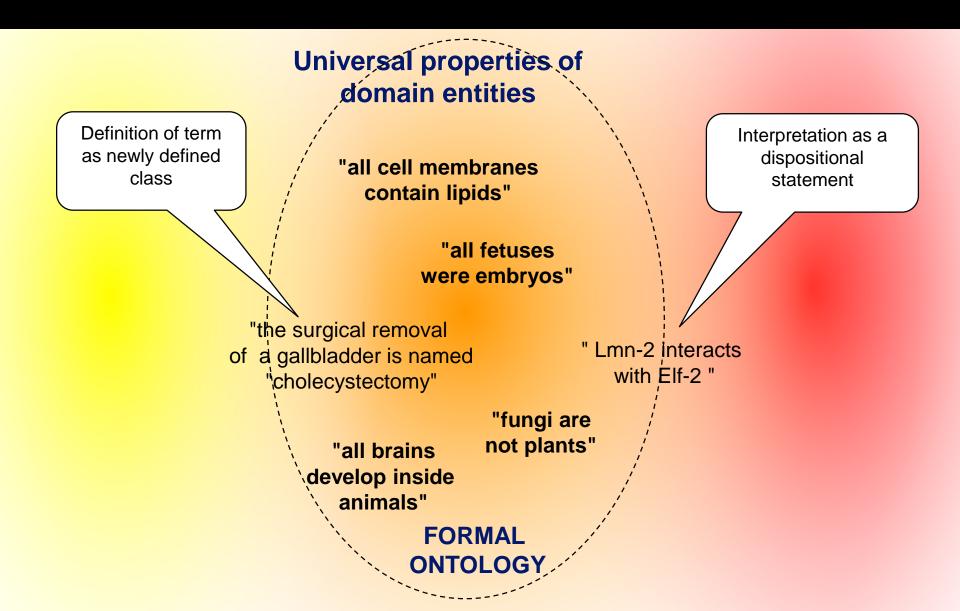
- Automated reasoning enables checking consistency, equivalence and subsumption
- Ontologies play an increasing role in new generation of biomedical terminology systems

<u>Schulz S, Boeker M. BioTopLite: An Upper Level Ontology for the Life Sciences. Evolution, Design and Application. In:</u> Furbach, U; Staab, S; editors(s). Informatik 2013. IOS Press; 2013

#### **BioTopLite2:** Dealing with ambiguity


- "Every gastric ulcer is in the stomach wall"
   "Every stomach wall is part of a stomach" →
   "Every gastric ulcer is in the stomach"
- 'is part of' subPropertyOf 'is included in' (both transitive)
- Condition equivalentTo 'Material object' or Disposition or Process
- 'Gastric ulcer' subClassOf Condition
   'Gastric ulcer' 'is included in' some 'Stomach wall'
   'Stomach wall' 'is part of' some Stomach →
   'Gastric ulcer' 'is included in' some Stomach

#### **BioTopLite2**


| Ontological Realism "light": no<br>commitment to universalism                                 | Ontological Realism: ontologies<br>describe universals                    |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Description Logic (OWL-DL)                                                                    | First-Order-Logic (FOL), only OWL-DL class-only and experimental versions |
| Binary object properties                                                                      | binary and ternary (time-indexed)<br>relations                            |
| Classes: 53                                                                                   | Classes: 36                                                               |
| Relations: 37                                                                                 | Relations (in experimental TR version):<br>78                             |
| Axioms: 527                                                                                   | Axioms (in experimental TR version):<br>1572                              |
| Coverage: domain-independent<br>upper-level classes and relations + few<br>biomedical classes | Coverage: domain-independent classes and relations                        |

BioTopLite2: harmonization intended with BFO2 once its DL version stable

#### **The Boundaries of Formal Ontology**



#### **The Boundaries of Formal Ontology**



#### **The Boundaries of Formal Ontology**

- Towards terminologies:
  - Definition of meaning of a term as new class; expression of ambiguities by disjunction:
     'Gastric ulcer' equivalentTo 'Gastric ulcer structure' or 'Gastric ulcer process'
  - Cholecystectomy equivalentTo 'Surgical removal' and 'has participant' some Gallbladder
- Towards "rich" knowledge bases
  - Qualitative dispositional predicates: 'Lmn-2' subClassOf 'is bearer of'

some *Disposition* and 'has realization'

only (Interaction and 'has participant' some Elf-2)

Schulz S, Jansen L: Molecular interactions: On the ambiguity of ordinary statements in biomedical literature. Applied Ontology, 2009; 4 (1): 21-34

Schulz S. Jansen L. Formal ontologies in biomedical knowledge representation. Yearb Med Inform. 2013;8(1):132-46.

#### **Conclusions**

- Domain ontologies are the most sustainable part of the representation of domain knowledge and they should be limited to
- Formal ontologies express what is universally true for all members of a class (all instances of a type)
- Large parts of interesting domain knowledge are not ontological
- Reusable ontologies should be
  - philosophically grounded and expressible in a computable language
  - user-friendly in terms of labelling
- This should be supported
  - by educational material
  - by expressive upper-level ontologies
  - appropriate editor and visualization tools
- Compromises are needed
  - understandability and intuitiveness of toplevel classes and relations
  - representation of ambiguous terms as disjoint classes
  - decidable and tractable logic (e.g. DL only allowing for binary relations)



Stefan Schulz Medical University of Graz (Austria)

purl.org/steschu



## Purism vs. Pragmatism Ontologies as sustainable KR artefacts

#### Slides downloadable from

http://user.medunigraz.at/stefan.schulz/presentations.htm

#### **Further readings**



#### **Ontology on the Web**

- Description Logics: <u>http://dl.kr.org/</u>
- Protégé: <u>http://protege.stanford.edu/</u>
- Bioontology: <u>http://www.bioontology.ch/</u>
- Buffalo Ontology Site: <u>http://ontology.buffalo.edu/smith/</u>
- OBO Foundry: <u>http://obofoundry.org/</u>
- Bioportal: <u>http://bioportal.bioontology.org/</u>
- SNOMED CT: <u>http://www.ihtsdo.org/snomed-ct/</u> <u>http://terminology.vetmed.vt.edu/sct/menu.cfm</u>
- CO-ODE (Pizza ontology): <u>http://www.co-ode.org/</u>
- GoodOD Guideline: <u>http://www.iph.uni-rostock.de/GoodOD-</u> <u>Guideline.1299.0.html</u>
- BioTop: <u>http://purl.org/biotop</u>