

Schulz S, Boeker M – BioTopLite – An Upper Level Ontology for the Life Sciences – ODLS 2013

Good reasons for highly constrained upper-level ontologies (ULOs)

- Guidance of ontology engineering process
- Standardization of ontology artefacts
- Decrease degrees of freedom
 - \rightarrow increase in interoperability
- Prevention of design errors
- Enforcement of a coherent upper-level view on the world
 - Example: division continuants occurrents information entities – real entities

Existing ULOs have shortcomings for use in the biomedical domain

- DOLCE: focussed on cognitive science, atemporal models
- BFO, current version 1.1 has no relations, unintuitive labels, version 2.0 under development, controversial issues
- GFO-Bio: difficult to understand
- UMLS Semantic network, GALEN upper level,
 Semanticscience Integrated Ontology: overly pragmatic,
 no principled criteria for upper-level divisions, more
 language-oriented than philosophy-oriented

Evolution of BioTop since 2006 (I)

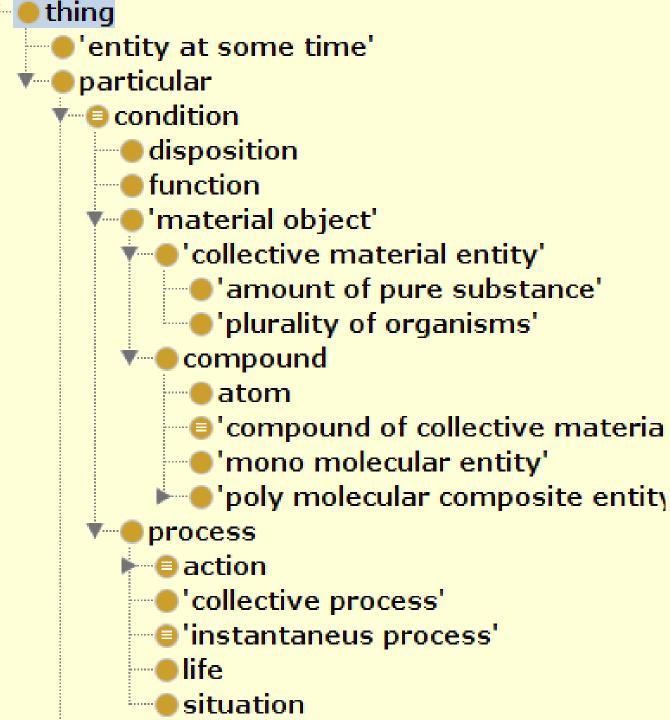
- Inspired by GENIA ontology: fixing of issues and broadening of scope
 - Design characteristics
 - OWL-DL
 - Mutually exclusive upper-level categories
 - Limited set of relations
 - Highly constrained
 - Understandable naming
 - Focus on cell biology and biomolecules

Evolution of BioTop since 2006 (II)

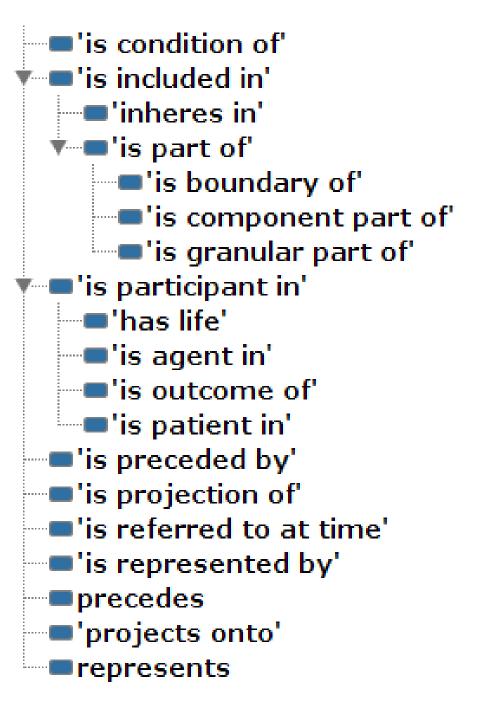
- Use for ontology building in large EU projects:
 - @neurist (neurology, neurosurgery)
 - DebugIT (nosocomial infections)
 - Need for increased performance
 - Separation of many biochemistry related classes → ChemTop (no further maintained, due to evolution of ChEBI)
 - Alignment with UMLS Semantic Network
 - Addition of medicine-related classes
 - External criterion for scoping
 - Alignment with upper-level ontologies
 - BFO, RO, DOLCE

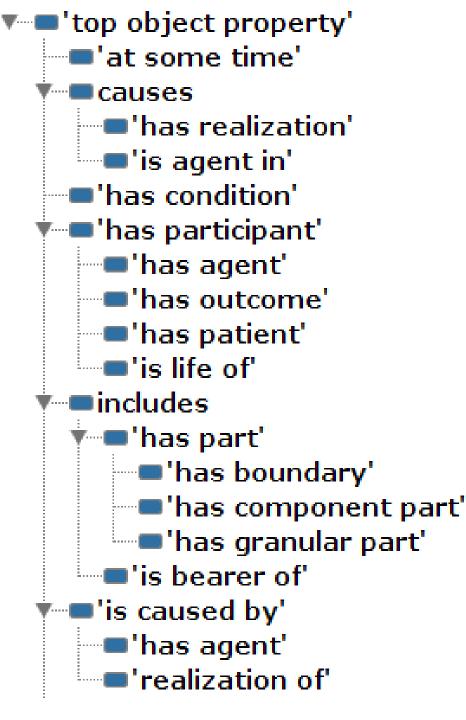
Evolution of BioTop since 2006 (III)

- Creation of "lite" version BTL
- Testing in ontology tutorials
- Basis for Guideline for "Good ontology design"
- Use in experimental ontologies in the SNOMED CT development process
- New requirements, e.g.
 - Causation
 - Inherent ambiguity of medical terms, e.g.
 "Fracture" structure or process
 "Allergy" process or disposition
 - Condition equivalentTo
 MaterialObject or Disposition or Process


BioTopLite -> BioTopLite2 Main principles

- Pragmatic realist view
- Agnostic stance with regard to the existence of universals
- Compulsive use of top-level: domain classes must be placed under them
- Flat hierarchy, no top-level classes like *Continuant*, *Occurrent*
- Intuitive naming of classes and relations ('has locus' -> 'is Included in')
- Information object as toplevel class
- Set of relations (object properties) considered as closed. Relational predicates to be reified form process subclasses
- Further reduction of object properties ('processual part of' -> 'part of')
- All instances are considered to be temporally qualified (since ternary relations like 'part of' (a, b, t) not possible)


BioTopLite2 : Characteristics


Metrics	Count
Classes	53
Object properties	37
Logical axioms	240
- Subclass axioms	172
- Equivalence axioms	5
- Disjointness axioms	14
- CGI	14
 SubObjectProperty axioms 	25
- Property chains	2

🕶 🛑 'immaterial object' 'immaterial three dimensional physical entity' one dimensional physical entity 'two dimensional physical entity' wave 'zero dimensional physical entity' information object' 📖 🔵 plan 🕶 🛑 quality canonicity object quality' process quality' - **role** 💌 🛑 'temporal region' 'point in time' time interval value region'

BTL2 example: Axioms for "material object"

has component part' only 'material object'
'has granular part' only 'material object'
has life' only life
Ife' some life
'has part' only ('material object' or 'immaterial object')
'is bearer of' only (disposition or 'information object' or 'object quality' or function or role)
'is included in' only 'entity at some time'
is part of only 'material object'
'is participant in' only process
projects onto' only ('immaterial three dimensional physical entity' and 'entity at some time')
projects onto' some 'immaterial three dimensional physical entity'
includes only (disposition or function or 'immaterial object' or 'information object' or 'material object' or quality or role)
includes only 'entity at some time'
 includes only 'entity at some time' particular
particular
 particular condition bClass Of (Anonymous Ancestor) 'is represented by' only ('entity at some time'

Temporally qualified entities (I)

- Problem: relations between continuant (endurant) objects are timedependent, e.g.
 - part-of (Heart#1234, John, 20130101)
 - part-of (Heart#1234, Jack, 20130103)
- OWL object properties are only binary
- Proposed solution (implemented in BTL2, currently under discussion for BFO2):
 - Instances of continuant entities are considered to be temporally qualified, such as

Heart#1234@20130101 rdf:Type Heart

Heart#1234@20130103 rdf:Type Heart

Temporally qualified entities (II)

- Consequences of temporally qualified continuants at the class (Tbox) level:
 - Class Entity at some useful as a means to enforce that instances of time-dependent classes be placed in a temporal context
 - Material object' subClassOf

'is included in' only 'Entity at some time'

- Advantage: expression of temporary relatedness:
 - 'Structured biological entity' subClassOf

'at some time' some ('is part of' some Organism)

'at some time' relates a temporally qualified continuant with any of its temporally qualified "siblings"

Current use of BTL / BTL2

- SemanticHealthNet EU Network of Excellence:
 Upper level for information model and clinical terminology (SNOMED CT)
 http://www.semantichealthnet.eu
- CELDA: ontology of cell types, in vitro as well as in vivo, based on species, anatomy, subcellular structures, developmental stages and origin

http://cellfinder.org/about/ontology

International Health Terminology Standards Development Organization: in several experimental ontologies (event, condition, episode; observables)

Access to BioTop and BioTopLite

- Website: <u>http://purl.org/biotop</u>
- Mailing list: <u>https://groups.google.com/forum/#!forum/biotop</u>
- Feedback welcome!

Acknowledgements

- People who contributed to the development of BioTop or provided important ideas:
 - Elena Beisswanger, Edward Cheetham, Bruce Goldberg, Udo Hahn, Robert Hoehndorf, Ludger Jansen, Catalina Martínez-Costa, Alan Rector, Daniel Schober, Kent Spackman, Holger Stenzhorn