

Stefan Schulz^{a,b}

Daniel Karlsson^b

^aInstitute for Medical Informatics, Statistics and Documentation, Medical University, Graz, Austria

^bInstitute of Medical Biometry and Medical Informatics, University Medical Center Freiburg, Germany

 ^c Department of Biomedical Engineering, Medical Informatics, Linköping University, Sweden

Bio-Ontologies SIG

Records and situations. Integrating contextual aspects in clinical ontologies

Ontology

• Theory of reality

Semantics

• Theory of meaning of (human language) designations

Semantics

blah blah

• Theory of meaning of (human language) designations

Epistemology

• Theory of knowledge

Representational Artifacts

Representational Artifacts

A. Rector, SemanticHealth D6.1

Biomedical terminologies are sets of terms... Example SNOMED CT

Domain terms

Operation on heart
Gallstones
Natural death
Helicobacter blood test
Asphyxia
Nose
Heart disease
Diabetes mellitus
Tuberculosis of lung

Biomedical terminologies are sets of terms ? Example SNOMED CT

Domain terms

Domain terms ??

Operation on heart	Operation on heart, rescheduled
Gallstones	Suspected Gallstones
Natural death	Natural death with probable cause suspected
Helicobacter blood test	Helicobacter blood test negative
Asphyxia	Poor condition at birth without known asphyxia
Nose	Absent Nose
Heart disease	Heart disease excluded
Diabetes mellitus	Newly diagnosed diabetes
Tuberculosis of lung	Tuberculosis of lung, confirmed histologically

Biomedical terminologies are sets of terms ? Example SNOMED CT

Domain terms

Propositions

Operation on heart	Operation on heart, rescheduled
Gallstones	Suspected Gallstones
Natural death	Natural death with probable cause suspected
Helicobacter blood test	Helicobacter blood test negative
Asphyxia	Poor condition at birth without known asphyxia
Nose	Absent Nose
Heart disease	Heart disease excluded
Diabetes mellitus	Newly diagnosed diabetes
Tuberculosis of lung	Tuberculosis of lung, confirmed histologically

Context independent

- Context and observer dependent (administrative, clinical contexts)
- "Epistemic intrusion" [1]

[1] Bodenreider O, Smith B, Burgun A (2004). The Ontology-Epistemology Divide: A Case Study in Medical Terminology. Int. Conf. on Formal Ontology and Information Systems (FOIS 2004). Amsterdam: IOS-Press, 185-195.

Representational Artifacts

Representational Artifacts

Classical view: Terms vs. propositions ≈ Ontologies vs. Information models

Domain Ontologies	Information Models
Contain classes that have physically existing domain entities (particulars) as members	Classes have information artifacts as members
Represent real-world particulars in terms of their inherent properties	Represent artifacts that are build to collect or annotate information
Can exist independently of information models as long as only the existence of particular things is recorded	Are required to record beliefs or states of knowledge about real things or types of things (as represented by ontologies)
Relatively context independent	Context dependent

- Language is misleading:
 - A suspected gallstone is not a gallstone
 - An absent nose is not a nose
 - A rescheduled operation is not an operation
 - A planned tonsillectomy is no tonsillectomy

Information on gallstones, noses, operations etc

Terms vs. propositions ≈ Ontologies vs. Information models

Domain Ontologies	Information Models
Contain classes that have physically existing domain entities (particulars) as members	Classes have information artifacts members
Represent real-world particulars in terms of their inherent properties	Represent artifacts that are build to collect or annotate information
Can exist independently of information models as long as only the existence of particular things is recorded	Are required to record beliefs or states of knowledge about real things or types of things (as represented by ontologies)
Relatively context independent	Context dependent

Crisp boundary or gradient ?

Domain Ontologies	Information Models
Contain classes that have physically existing	Classes have information artifacts members
domain entities (particulars) as members	
Represent real-world particulars in terms of their	Represent artifacts that are build to collect or
inherent properties	annotate information
Can exist independently of information	Are required to record beliefs or states of
models as long as only the existence of	knowledge about real things or types of things
particular things is recorded	(as represented by ontologies)
Relatively context independent	Context dependent

technically

Proposal

Our proposal:

- refrain from a "canonic" division between ontologies and information models
- common ontological framework which accommodates both based on the BioTop upper level ontology
- interoperability between different representational flavors (ontology / information model combination)
- example use case and competency questions

Can Information Models be expressed by the same logical framework as ontologies?

- Information objects as extension of a domain ontology
- Example: BioTop upper ontology (<u>http://purl.org/biotop</u>)

Running example. "Stenosis of the left carotid artery"

- 1. Stenosis of artery
 - can be on the carotid artery
 - can be left or right
- 2. Proposition on (1.):
 - known whether present or absent
 - unknown whether present or absent
 - on patient him/herself or on a relative, e.g. parent
 - asserted as a future risk

Upper level

[1] Rector AL, Brandt, S. Why Do It the Hard Way? The Case for an Expressive Description Logic for SNOMED. Journal of the American Medical Informatics Association 2008; 15: 744–751.

[2] Ruttenberg, A., Courtot, M., The IAO Community: The Informa-tion Artifact Ontology (2010) http://code.google.com/p/information-artifact-ontology/

Competing information Model Representations

"Mention of stenosis of right carotid in a patient's health record"

Information model templates

Postcoordination at information model level

Attribute	Value
Finding Context	
Disorder	Stenosis
Location	Carotid artery
Laterality	Left

Attribute	Value
Finding Context	
Disorder	Stenosis of carotid artery
Location	
Laterality	Left

Precoordination at ontology level

Attribute	Value
Finding Context	
Disorder	Stenosis of the Left Carotid Artery
Location	
Laterality	

Equivalent representations, no commitment to existence of pathologic entity

```
RecordEntry and
                                        "Mention of stenosis of right carotid in
  (isAbout only (Situation and
                                        a patient's health record"
    (includes some (LivingHuman and
       (bearerOf some SubjectOfRecordRole) and
          (locusOf some (Stenosis and
           (hasLocus some (CarotidArtery and
              bearerOf some LeftLaterality)))))))))
                                  StenosisOfLeftCarotidArtery equivalent
                                     Stenosis and (hasLocus some
     equivalent
                                            (CarotidArtery and
                                             bearerOf some LeftLaterality))
RecordEntry and (isAbout only (Situation and
     (includes some (LivingHuman and
        (bearerOf some SubjectOfRecordRole) and
          (locusOf some StenosisOfLeftCarotidArtery)))))
```

"Stenosis of the left carotid artery", "known present" vs. "known absent"

Attribute	Value
Finding Context	known present
Disorder	Stenosis
Location	Carotid artery
Laterality	Left

"Mention in the health record that patient has a stenosis of right carotid"

Attribute	Value
Finding Context	known absent
Disorder	Stenosis
Location	Carotid artery
Laterality	Left

"Mention in the health record that patient has no stenosis of right carotid"

"Stenosis of the left carotid artery", "known present" vs. "known absent"

RecordEntry and isAbout some Situation and (isAbout only (Situation and (includes some (LivingHuman and (bearerOf some SubjectOfRecordRole) and (locusOf some (Stenosis and (hasLocus some (CarotidArtery and bearerOf some LeftLaterality))))))))

"Mention in the health record that patient has a stenosis of right carotid"

RecordEntry and isAbout some Situation and (isAbout only (Situation and (includes some (LivingHuman and (bearerOf some SubjectOfRecordRole) and not (locusOf some (Stenosis and (hasLocus some (CarotidArtery and bearerOf some LeftLaterality)))))))

"Mention in the health record that patient has no stenosis of right carotid"

Stenosis of the left carotid artery in family history

RecordEntry and isAbout some Situation and (isAbout only (Situation and (includes some (LivingHuman and (bearerOf some ParentRole) and (locusOf some (Stenosis and (hasLocus some (CarotidArtery and bearerOf some LeftLaterality))))))))

"Mention in the health record that a parent has a stenosis of right carotid"

Querying the ontology

http://purl.org/steschu/BO2011

"Possible Disorder of Artery"

Query:

Query (class expression)

RecordEntry and (isAbout only (Situation and (includes some (LivingHuman and (LocusOf some (Disorder and (hasLocus some Artery)))))))

Execute

Add to ontology

Ancestor classes (5)
InformationEntity
QUERIE S
RecordEntry
RecordEntryAboutDisorder
Thing
Super classes (1)
RecordEntryAboutDisorder
Sub classes (1)
RecordEntryAboutStenosisOfCarotid
Descendant classes (7)
ConfirmedRecordEntryAboutStenosisOfCarotid
ConfirmedRecordEntryAboutStenosisOfCarotidOfParent

- ConfirmedRecordEntryAboutStenosisOfLeftCarotid_PostCoord
- ConfirmedRecordEntryAboutStenosisOfLeftCarotid_PreCoord
- RecordEntryAboutStenosisOfCarotid
- RecordEntryAboutStenosisOfLeftCarotid_PostCoord
- RecordEntryAboutStenosisOfLeftCarotid_PreCoord

Querying the ontology

http://purl.org/steschu/BO2011

"No stenosis of Artery"

Query:

Query (class expression)

RecordEntry

and (isAbout some

(Situation

and (includes some

(LivingHuman

and (not (LocusOf some

(Stenosis

and (hasLocus some Artery))))))))

Execute

Add to ontology

Ancestor classes (8)

ConfirmedRecordEntry

InformationEntity

NegatedRecordEntryAboutStenosisOfCarotid

NegatedRecordEntryAboutStenosisOfLeftCarotid

QUERIES

RecordEntry

RecordEntryAboutNonExistingStenosisOfLeftCarotid

Thing

Super classes (1)

NegatedRecordEntryAboutStenosisOfCarotid

Sub classes (1)

NegatedRecordEntryAboutStenosis

Descendant classes (2)

NegatedRecordEntryAboutDisorder

NegatedRecordEntryAboutStenosis

Conclusion

- BioTop top classes and relations sufficient for expressing some important features of clinical information models
- Equivalence between different flavors of encoding can be computed
- Representation of different epistemic states (known present, known absent, mention of)
- Challenges
 - Scalability
 - DL Reasoning

Acknowledgements

- DFG, grant agreement JA 1904/2-1, SCHU 2515/1-1 GoodOD (Good Ontology Design).
- EU 7th FP, grant agreement ICT-2007.5.2-217139, DebugIT (Detecting and eliminating bacteria using information technologies)