Proceedings Track: PT36

Ontology Patterns for Tabular Representations of Biomedical Knowledge on Neglected Tropical Diseases

http://www.cin.ufpe.br/~ntdo

Filipe Santana, Daniel Schober, Zulma Medeiros, Fred Freitas, Stefan Schulz

> Master Candidate in Computer Science fss3@cin.ufpe.br

Cln.ufpe.br

Introduction

Tabular representation of facts in a scientific article

Geographic location	Arthropod (Vector)	Vertebrate (Host)	Protist (Pathogen)	Manifestation (Disease)
Guadeloupe	Lu.longipalpis	Human	L.chagasi	VL
Mexico	Lu.longipalpis	Human	L.chagasi	VL
	Lu.olmeca		L.mexicana	CL
	olmeca		L.sp	ADCL
Paraguay	Lu.flaviscutellata	Human	L.amazonensis	CL
	L.Longipalpis		L.chagasi	ADCL
Peru	Lu.whitmani	Human	L.braziliensis	CL
	Lu.peruensis		L.peruviana	ML
	Lu.verrucarum		-	

[Sharma & Singh, 2008]

Introduction

- Tabular representations: common format of compact presentation of structured data in scientific publications;
 - Table cell content denotes:
 - Numeric content
 - Reference to Individuals
 - Reference to Classes
- Table Semantics
 - hidden assumptions
 - proper interpretation requires in-depth background knowledge

Introduction

Hypothesis:

- Tables (partly) contain ontological content
- Use for semi-automated domain ontology enrichment:
- Extraction of classes, individuals, relations, axioms

NTDO (Neglected Tropical Disease Ontology)

- Based on **BioTop** (upper-level ontology for biomedicine)
- Subject Matter: Vector borne diseases, e.g.
 Filariasis, Leishmaniasis
- Complex organisms (vectors, parasites) and lifecycles;
- Geographic locations
- Use case: querying epidemiological data

Geographic location	Arthropod (Vector)	Vertebrate (Host)	Protist (Pathogen)	Manifestation (Disease)
Guadeloupe	Lu.longipalpis	Human	L.chagasi	VL
Mexico	Lu.longipalpis	Human	L.chagasi	VL
	Lu.olmeca		L.mexicana	CL
	olmeca		L.sp	ADCL
Paraguay	Lu.flaviscutellata	Human	L.amazonensis	CL
	L.Longipalpis		L.chagasi	ADCL
Peru	Lu.whitmani	Human	L.braziliensis	CL
	Lu.peruensis		L.peruviana	ML
	Lu.verrucarum			

[Sharma & Singh, 2008]

Methods: Table analysis

Columns:

- GeographicRegion: Individuals;
- Vector (Arthropod): Classes (of insects)
- Vertebrate (Host): Classes (of patients)
- Pathogen (Protist): Classes (of microorganisms)
- PathologicalProcess: Classes (of diseases)

Cells:

- one or more entries
- Rows:
 - Each row: possible transmission pattern

Geographic location	Arthropod (Vector)	Vertebrate (Host)	Protist (Pathogen)	Manifestation (Disease)
Guadeloupe	Lu.longipalpis	Human	L.chagasi	VL
Mexico	Lu.longipalpis	Human	L.chagasi	VL
	Lu.olmeca		L.mexicana	CL
	olmeca		L.sp	ADCL
Paraguay	Lu.flaviscutellata	Human	L.amazonensis	CL
	L.Longipalpis		L.chagasi	ADCL
Peru	Lu.whitmani	Human	L.braziliensis	CL
	Lu.peruensis		L.peruviana	ML
	Lu.verrucarum			

[Sharma & Singh, 2008]

Methods: Analysis of Pathogen Transfer Process

Each instance of transmission process:

has a location (biotop:hasLocus);

has an agent (biotop:hasAgent);

has a passive participant (biotop:hasPatient);

Geographic location	Arthropod (Vector)	Vertebrate (Host)	Protist (Pathogen)	Manifestation (Disease)
$G_{a1}G_{a2}\ldots G_{ak}$ $G_{b1}G_{b2}\ldots G_{bk}$	$V_{a1}V_{a2}\dots V_{aj}$ $V_{b1}V_{b2}\dots V_{bj}$	$H_{a1}H_{a2}\ldots H_{am}$ $H_{b1}H_{b2}\ldots H_{bm}$	$\begin{array}{l} P_{a1}P_{a2}P_{al}\\ P_{b1}P_{b2}P_{bl} \end{array}$	$D_{a1}D_{a2}\dots D_{an}$ $D_{b1}D_{b2}\dots D_{bn}$
$\dots G_{n1}G_{n2}\dots G_{nk}$	\dots $V_{n1}V_{n2}\dots V_{nj}$	$\dots \\ H_{n1}H_{n2}\dots H_{nm}$	$\dots P_{n1}P_{n2\dots}P_{nl}$	\dots $D_{n1}D_{n2}\dots D_{nn}$
$\dots G_{z1}G_{z2}\dots G_{zk}$	$\cdots V_{z1}V_{z2}\ldots V_{zj}$	$\dots \\ H_{z1}H_{z2}\dots H_{zm}$	$\dots P_{z1}P_{z2}P_{zl}$	$\dots D_{z1}D_{z2}\dots D_{zn}$

General Pathogen Transfer Pattern

PathogenTransferByVector equivalentTo
PathogenTranferByVector_a or
PathogenTranferByVector_b or ... or
PathogenTranferByVector_n or ... or
PathogenTranferByVector_z

PathogenTransferByVector, equivalentTo Transfer and (hasAgent some (V_{n1} or V_{n2} or...or V_{ni})) and (hasLocus some $(G_{loc_{n1}} \text{ or } G_{loc_{n2}})$ or ... or $G_{loc_{nk}}$) and (hasPatient some ($(P_{n1} \text{ or } P_{n2} \text{ or...or } P_{n})$) and (hasLocus some (H_{n1} or H_{n2} or...or H_{nm}) PathogenTransferByVector, subClassOf Transfer and (hasAgent only $(V_{n1} \text{ or } V_{n2} \text{ or...} V_{ni})$) and (hasLocus only ((not GeographicLocation)) or $G_{loc_{n1}}$ or $G_{loc_{n2}}$ or... $G_{loc_{nk}}$) and (hasPatient only ((P_{n1} or P_{n2} or...or P_{nl}) and (causes only $(D_{n1} \text{ or } D_{n2} \text{ or...or } D_{nr}))))$

Results Extraction and Ontology Construction

Transfer tabular content from publication into Excel spreadsheet

Geo	Vector	Host	Pathogen	Manifestation
Guadeloupe	LutzomyiaLongipalpis	Human	LeishmaniaChagasi	VisceralLeishmaniasis
Mexico	LutzomyiaLongipalpis LutzomyiaOlmecaOlmeca	Human	LeishmaniaChagasi LeishmaniaMexicana LeishmaniaSp	Visceral Leishmaniasis Cutaneous Leishmaniasis Acute Diffuse Cutaneous Leish maniasis
Paraguay	LutzomyiaFlaviscutellata LutzomyiaLongipalpis	Human	LeishmaniaAmazonens is LeishmaniaChagasi	Cutaneous Leishmaniasis Acute Diffuse Cutaneous Leish maniasis Visceral Leishmaniasis
Peru	Lutzomyia Whitmani Lutzomyia Peruensis Lutzomyia Verrucarum	Human	LeishmaniaBraziliensis LeishmaniaPeruviana	Cutaneous Leishmaniasis Mucocutaneous Leishmaniasis

Creating OWL code using VBA scripting

Results Additional Axioms (manually inserted)

Reified Geographic Locations (G_Loc_i):

G_Loc_i equivalentTo

GeographicLocation and hasLocus value G_i

Dispositions and Manifestations:

D_disp_i equivalentTo PathologicalDisposition and (hasRealization only D_i)
D_i equivalentTo PathologicalProcess and (realizationOf some D_disp_i)
D_i subClassOf realizationOf only D_disp_i

Results Competency Questions

What pathogen can be transmitted by a given vector in a geographic location?

Query (class expression) Protist and not (patientin some (PathogenTransferByVector and hasLocus some (GuadeloupeLocation and hasAgent only LutzomyiaLongipalpine) Execute Add to ontology	\$)))
Query results Sub classes (5) LeishmaniaAmazonensis LeishmaniaBraziliensis LeishmaniaMexicana LeishmaniaPeruviana	 Super classes Ancestor classes Equivalent classes Subclasses Descendant classes Individuals
Cuery: Query (class expression) Destint and not (Laiphmania America and Laiphmania Destinitions)	
Execute Add to ontology	
Sub classes (1) LeishmaniaChagasi	Super classes Ancestor classes Equivalent classes Subclasses Descendant classes

Can disease X be transmitted by some vector in a given geographic location Z?

Query:	Query results		
Query (class expression)	Equivalent class	Super classes	
PathogenTransferByVector and	Nothing	Ancestor classes	
(hasLocus some MexicoLocation) and		Equivalent classes	
(hasPatient some (Protist and	Sub classes (0)	✓ Subclasses	
causes some MucocutaneousLeishmaniasis))		Descendant classes	
Execute Add to ontology			

Results Competency Questions

What kind of disease can be transmitted in a given geographic location ?

woory.	
Query (class expression)	
PathologicalProcess and not (causedBy some (Protist and (patientIn some (PathogenTransferByVector and hasLocus some PeruLocation))))	•
Execute Add to ontology	
Query results	
Sub classes (2)	Super classes
AcuteDiffuseCutaneousLeishmaniasis	Ancestor classes
VisceralLeishmaniasis	Equivalent classes
	 Subclasses
Query:	
Cuery (class expression) PathologicalProcess and not (AcuteDiffuseCutaneousLeishmaniasis or VisceralLeishmaniasis)	• •
Execute Add to ontology	
Query results	
Sub classes (2)	Super classes
CutaneousLeishmaniasis	Ancestor classes
MucocutaneousLeishmaniasis	Equivalent classes
	Subclasses
	Descendant classes
	Individuals

Conclusions

- Legacy information extracted from tables can be transformed in a formal ontology
- OWL-DL sufficient to represent moderately complex biological situations;
- Dependency on principled ontological foundations:
 - rigid set of object properties from *BioTop*;
 - closed-world interpretation of the table content

DL queries instead of RDF-based SPARQL queries:

- using simple DL Manchester syntax
- supports reasoning about taxonomies and transitive relations

Conclusions

Querying:

- Subclass retrieval and satisfiability testing;
- Broad use of OWL DL constructors, i.e. disjunctions, negations, value restrictions and complex class definitions;

Limitations:

- Numeric content (rudimentary represented by OWL Data Properties), probabilistic associations; default expressions
- Scalability of ontologies in expressive DL
- Tools for Complex DL Queries: Supported by Protégé, but could be improved for end users;

Acknowledgements

This work was supported by:

- DFG grant JA 1904/2-1; SCHU 2515/1-1 GoodOD (Good Ontology Design)
- BMBF-IB mobility project BRA 09/006.
- Federal University of Pernambuco (UFPE);
 Informatics Center (Cin);

for your attention!!

Filipe Santana Bsc Biology Msc Candidate in Computer Science fss3@cin.ufpe.br

> For additional information, http://www.cin.ufpe.br/~ntdo