## The Pitfalls of Thesaurus Ontologization - the Case of the NCI Thesaurus



Stefan Schulz<sup>1,2</sup>, Daniel Schober<sup>1</sup>, Ilinca Tudose<sup>1</sup>, Holger Stenzhorn<sup>3</sup>

<sup>1</sup>Institute of Medical Biometry und Medical Informatics, University Medical Center Freiburg, Germany <sup>2</sup>AVERBIS GmbH, Freiburg, Germany

<sup>3</sup>Paediatric Hematology and Oncology, Saarland University Hospital, Homburg, Germany



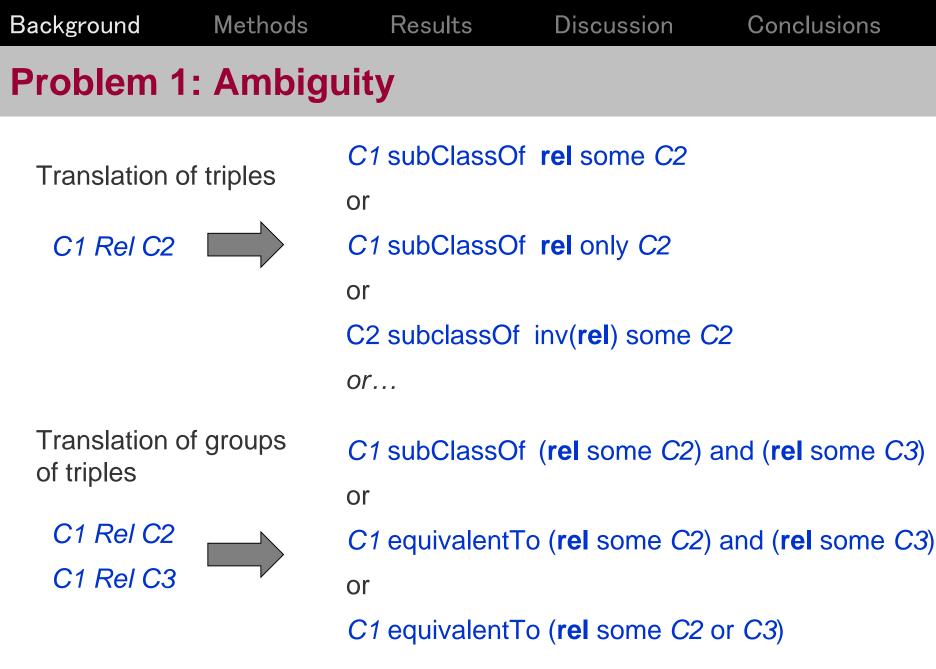




## Typology

### Informal Thesauri

- Examples: MeSH, UMLS Metathesaurus, WordNet
- Describe terms of a domain •
- Concepts: represent the meaning of (quasi-) synonymous terms
- Concepts related by (informal) semantic relations
- Linkage of concepts:
   C1 Rel C2


## **Formal ontologies**

- Examples: openGALEN, OBO, SNOMED
- Describe entities of a domain
- **Classes**: collection of entities according to their properties
- Axioms state what is universally true for all members of a class
  - Logical expressions:
    - C1 comp rel quant C2

## **Thesaurus ontologization**

- Upgrading a thesaurus to a formal ontology
- Rationales: use of standards (e.g. OWL-DL), enhanced reasoning, clarification of meaning, internal quality assurance...
- Expressiveness of thesauri vs. ontologies:
  - The meaning of thesaurus assertions follows natural language, the meaning of ontology axioms follow mathematical rigor
  - Thesaurus triples cannot be unambiguously translated into ontology axioms





or ...

## **Problem 2: Non-universal statements**

- "Aspirin Treats Headache"
   "Headache Treated-by Aspirin"
   (seemingly intuitively understandable)
- Translation problem into ontology:
  - Not every aspirin tablet treats some headache
  - Not every headache is treated by some aspirin
- Description logics do not allow probabilistic, default, or normative assertions
- Axioms can only state what is true for all members of a class

**Objective of the study** 

## **Objective of the study**

- Investigate correctness of existentially quantified properties in biomedical ontologies
  - OBO Foundry ontologies
  - OBO Foundry candidates
  - NCIT as an instance of OBO Foundry candidates
- Selection of NCIT
  - Size
  - System in use
  - Importance for generating and communicating standardized meanings in oncology
  - Quality issues already addressed by Ceusters W, Smith B, Goldberg L. A terminological and ontological analysis of the NCI Thesaurus. Methods of Information in Medicine 2005;44(4):498-507.

## **Assessment Method (I)**

- Select a sample of existentially quantified clauses from the NCIT OWL version
- Pattern: C1 subClassOf rel some C2, according to description logics semantics : "Every instance of C1 is related to at least one instance of C2 via the relation rel"
- Found: 77 different relation types, used in more than 180,000 existentially qualified clauses
  - Most frequent relation "Disease\_may\_have\_finding" (N = 27,653)
  - 15 relation types occurring less than ten times each.
- Sampling: n<sub>i</sub> = round (2 log<sub>10</sub>(N<sub>i</sub>+1)) with N<sub>i</sub> being the number of existentially qualified restrictions in which r<sub>i</sub> was used

## **Assessment Method (II)**

Each sample expression like *C1* subClassOf **Rel** some *C2* was assessed by two experts for correctness

#### Assessment Criteria:

- Ontological commitment: the NCIT classes extend to real things in the clinical domain
- Focus: to judge whether the ontological dependence of C1 on C2 is adequate
- Exact confidence intervals (95%) were computed based on the binomial distribution.
- Also collected: anecdotic evidence of other kinds of errors.

Background Methods Results Discussion Conclusions

## **Results**

| NCIT relation type                               | #            | sam- | # errors | sample | estimated | 95% CI | 95% CI | 95% CI   | 95% CI   |
|--------------------------------------------------|--------------|------|----------|--------|-----------|--------|--------|----------|----------|
|                                                  | occurrences  | ple  | in       | error  | number of | lower  | upper  | estimate | estimate |
|                                                  | in OWL       | size | sample   | rate   | errors    | bound  | bound  | lower    | upper    |
|                                                  | "someValues  |      |          |        |           |        |        | bound    | bound    |
|                                                  | From" clause |      |          |        |           |        |        |          |          |
| Disease_May_Have_Finding                         | 27,652       | 9    | 9        | 1.00   | 27,652    | 0.66   | 1.00   | 18,353   | 27,652   |
| Disease_May_Have_Cytogenetic_Abnormality         | 18,860       | 9    | 9        | 1.00   | 18,860    | 0.66   | 1.00   | 12,517   | 18,860   |
| Gene_Product_Plays_Role_In_Biological_Process    | 15,607       | 8    | 8        | 1.00   | 15,607    | 0.63   | 1.00   | 9,842    | 15,607   |
| Gene_Plays_Role_In_Process                       | 14,385       | 8    | 8        | 1.00   | 14,385    | 0.63   | 1.00   | 9,071    | 14,385   |
| Chemotherapy_Regimen_Has_Component               | 10,861       | 8    | 0        | 0.00   | 0         | 0.00   | 0.37   | 31       | 4,012    |
| Gene_Product_Encoded_By_Gene                     | 10,754       | 8    | 0        | 0.00   | 0         | 0.00   | 0.37   | 30       | 3,973    |
| Disease_May_Have_Molecular_Abnormality           | 10,687       | 8    | 7        | 0.88   | 9,351     | 0.47   | 1.00   | 5,060    | 10,653   |
| Gene_Is_Element_In_Pathway                       | 8,364        | 8    | 8        | 1.00   | 8,364     | 0.63   | 1.00   | 5,274    | 8,364    |
| Gene_Product_Is_Element_In_Pathway               | 8,302        | 8    | 8        | 1.00   | 8,302     | 0.63   | 1.00   | 5,235    | 8,302    |
| Gene_Product_Has_Biochemical_Function            | 7,695        | 8    | 0        | 0.00   | 0         | 0.00   | 0.37   | 22       | 2,843    |
| Anatomic_Structure_Is_Physical_Part_Of           | 6,285        | 8    | 1        | 0.13   | 786       | 0.00   | 0.53   | 20       | 3,309    |
| Gene_In_Chromosomal_Location                     | 5,392        | 7    | 0        | 0.00   | 0         | 0.00   | 0.41   | 0        | 2,209    |
| Gene_Found_In_Organism                           | 4,086        | 7    | 0        | 0.00   | 0         | 0.00   | 0.41   | 0        | 1,674    |
| Disease_May_Have_Associated_Disease              | 3,353        | 7    | 7        | 1.00   | 3,353     | 0.59   | 1.00   | 1,980    | 3,353    |
| EO_Disease_Has_Associated_EO_Anatomy             | 3,102        | 7    | 0        | 0.00   | 0         | 0.00   | 0.41   | 0        | 1,271    |
| Gene_Has_Physical_Location                       | 2,945        | 7    | 0        | 0.00   | 0         | 0.00   | 0.41   | 0        | 1,206    |
| Gene_Product_Expressed_In_Tissue                 | 2,476        | 7    | 7        | 1.00   | 2,476     | 0.59   | 1.00   | 1,462    | 2,476    |
| Disease_May_Have_Abnormal_Cell                   | 2,442        | 7    | 7        | 1.00   | 2,442     | 0.59   | 1.00   | 1,442    | 2,442    |
| Gene_Product_Has_Associated_Anatomy              | 1,972        | 7    | 1        | 0.14   | 282       | 0.00   | 0.58   | 7        | 1,141    |
| Gene_Product_Has_Organism_Source                 | 1,904        | 7    | 0        | 0.00   | 0         | 0.00   | 0.41   | 0        | 780      |
| Chemical_Or_Drug_Has_Physiologic_Effect          | 1,818        | 7    | 7        | 1.00   | 1,818     | 0.59   | 1.00   | 1,073    | 1,818    |
| EO_Disease_Maps_To_Human_Disease                 | 1,811        | 7    | 7        | 1.00   | 1,811     | 0.59   | 1.00   | 1,069    | 1,811    |
| Gene_Associated_With_Disease                     | 1,581        | 6    | 3        | 0.50   | 791       | 0.12   | 0.88   | 187      | 1,394    |
| Gene_Product_Has_Structural_Domain_Or_Motif      | 1,329        | 6    | 0        | 0.00   | 0         | 0.00   | 0.46   | 0        | 610      |
| Chemical_Or_Drug_Has_Mechanism_Of_Action         | 1,094        | 6    | 6        | 1.00   | 1,094     | 0.54   | 1.00   | 592      | 1,094    |
| Gene_Product_Malfunction_Associated_With_Disease | 1,049        | 6    | 6        | 1.00   | 1,049     | 0.54   | 1.00   | 567      | 1,049    |
| OTHER RELATIONS                                  | 6,494        | 163  | 67       | 0.41   | 2,669     | 0.34   | 0.49   | 2,197    | 3,168    |
| SUM                                              | 182,300      | 354  | 176      |        | 121,091   |        |        | 76,031   | 145,455  |

| NCIT relation type                               | #           | sam- | #errors | sample       | estimated |         | 95% CI     | 95% (  |                         | 95% CI          |
|--------------------------------------------------|-------------|------|---------|--------------|-----------|---------|------------|--------|-------------------------|-----------------|
|                                                  | occurrences | ple  | in      | error        | number of | lower   | 1          | estim  |                         | estimate        |
| NCIT relation type                               |             | #    | #       |              | sam-      | # error |            | sample |                         |                 |
|                                                  |             |      |         | occurrences  |           | ple     | in         |        | error                   |                 |
|                                                  |             |      | i       | in OWL       |           | size    | sample rat |        | rate                    | <b>a</b> 552    |
|                                                  |             |      |         |              |           | 5120    | Jampie     |        | 360                     |                 |
|                                                  |             |      |         | "someValues  |           |         |            |        |                         | 507             |
|                                                  |             |      |         | From" clause |           |         |            |        |                         | 385             |
| Disease_May_Have_Finding                         |             |      |         | 27,652       |           | 9       |            | 9      |                         | 1.00            |
| Disease_May_Have_Cytogenetic_Abnormality         |             |      |         | 18,860       |           | 9       |            | 9      |                         | 1.00 53         |
| Gene_Product_Plays_Role_In_Biological_Process    |             |      |         |              | 15,607    | 8       | 5          | 8      | Т                       | 1.00            |
| Gene_Plays_Role_In_Process                       |             |      |         | 14,385       |           | 8       | 5          | 8      | Т                       | 1.00            |
| Chemotherapy_Regimen_Has_Component               |             |      |         | 10,861       |           | 8       |            | 0      |                         | 0.00            |
| Gene Product Encoded By Gene                     |             |      |         |              | 10,754    | 8       |            | 0      |                         | <u>0.00</u> 574 |
| Disease_May_Have_Molecular_Abnormality           |             |      |         | 10,687       |           | 8       | }          | 7      | Г                       | 0.88            |
| Gene_Is_Element_In_Pathway                       |             |      |         | 8,364        |           | 8       | }          | 8      | Т                       | 1.00            |
| Gene_Product_Is_Element_In_Pathway               |             |      |         |              | 8,302     | 8       |            | 8      | T                       | 1.00            |
| Gene_Product_Has_Associated_Anatomy              | 1,972       | 7    | 1       | 0.14         | 282       | 2 0.00  | 0.58       |        | -,- <mark>-</mark><br>7 | 1,141           |
| Gene_Product_Has_Organism_Source                 | 1,904       | . 7  | 0       | 0.00         | (         | 0.00    | 0.41       |        | 0                       | 780             |
| Chemical_Or_Drug_Has_Physiologic_Effect          | 1,818       | 7    | 7       | 1.00         | 1,818     | 3 0.59  | 1.00       | 1      | L,073                   | 1,818           |
| EO_Disease_Maps_To_Human_Disease                 | 1,811       | . 7  | 7       | 1.00         | 1,811     | 0.59    | 1.00       | 1      | L,069                   | 1,811           |
| Gene_Associated_With_Disease                     | 1,581       | 6    | 3       | 0.50         | 791       | 1 0.12  | 0.88       |        | 187                     | 1,394           |
| Gene_Product_Has_Structural_Domain_Or_Motif      | 1,329       | 6    | 0       | 0.00         | (         | 0.00    | 0.46       |        | 0                       | 610             |
| Chemical_Or_Drug_Has_Mechanism_Of_Action         | 1,094       | 6    | 6       | 1.00         | 1,094     | 4 0.54  | 1.00       |        | 592                     | 1,094           |
| Gene_Product_Malfunction_Associated_With_Disease | 1,049       | 6    | 6       | 1.00         | 1,049     | 9 0.54  | 1.00       |        | 567                     | 1,049           |
| OTHER RELATIONS                                  | 6,494       | 163  | 67      | 0.41         | 2,669     | 9 0.34  | 0.49       | 2      | 2,197                   | 3,168           |
| SUM                                              | 182,300     | 354  | 176     |              | 121,091   | L       |            | 76     | 5,031                   | 145,455         |

BackgroundMethodsResultsDiscussionConclusionsResults

- Very high rate of ontologically inadequate axioms: Half of the sample: n = 176 rated as inadequate Estimation 0.5 [0.42 – 0.80] <sup>95%</sup>
- inter-rater agreement (Cohen's Kappa):
   0.75 [0.68 0.82]<sup>95%</sup>
- Typical inadequate statements
  - 1. relations including "may" (**disease\_may\_have\_finding**)
  - relations including "role"
     (gene\_product\_plays\_role\_in\_process)
  - 3. inverse dependencies (e.g. parts on wholes)
  - 4. distributive assertions formulated as conjunctions

## Why are they rated false?

- Ureter\_Small\_Cell\_Carcinoma subclassOf
   Disease\_May\_Have\_Finding some Pain
- in plain English: For every member of the class *Ureter\_Small\_Cell\_Carcinoma* there is a relation to at least one member of the class *Pain* (regardless of the nature of the relation)
- Let us abstract the relation Disease\_May\_Have\_Finding to the parent relation Associated\_With (the top of the relation hierarchy):
- With *Ureter\_Small\_Cell\_Carcinoma* subclassOf *Carcinoma*, a query for painless cancer: *Carcinoma* and not **Associated\_With** some *Pain* will not retrieve any disease case classified as *Ureter\_Small\_Cell\_Carcinoma*
- A DSS using NCIT-OWL + reasoner could then fatally infer that the absence of pain rules out the diagnosis Ureter\_Small\_Cell\_Carcinoma

## What is the basic problem?

- Mismatch between
  - the intended meaning of a relation, here the notion of "may" in Disease\_May\_Have\_Finding
  - the set-theoretic interpretation of the quantifier "some" in Description Logics
- Problem: DLs have no in-built operator for expressing possibility
- Solution (Workaround ?): dispositions with value restrictions: *Ureter\_Small\_Cell\_Carcinoma* subclassOf Bearer\_of some (*Disposition* and Has\_Realization only *Pain*)

Other errors and possible solutions (I)

Antibody\_Producing\_Cell subclassOf

Part\_Of some Lymphoid\_Tissue

- Problem: Cells produce antibodies also outside the lymphoid tissue
- Solution: Inversion:

Lymphoid\_Tissue subclassOf

*Has\_Part* some Antibody\_Producing\_Cell

(which is NOT the same as the above axiom)

## Other errors and possible solutions (II)

- Calcium-Activated\_Chloride\_Channel-2 subClassOf
   Gene\_Product\_Expressed\_In\_Tissue some Lung and
   Gene\_Product\_Expressed\_In\_Tissue some Mammary\_Gland and
   Gene\_Product\_Expressed\_In\_Tissue some Trachea
- Problem: False encoding of distributive statements (a single molecule cannot be located in disjoint locations)
- Solution (but probably not complete...): *Calcium-Activated\_Chloride\_Channel-2* subClassOf *Gene\_Product\_Expressed\_In\_Tissue* only

(Lung\_Structure or Mammary\_Gland \_Structure or Trachea\_Structure)

# Background Methods Results Discussion Conclusions Discussion Conclusion Conclusion Conclusion

- Obviously, NCIT-OWL if strictly interpreted according OWL semantics, abounds of errors
- NCIT curators: "much more (...) a 'working terminology' than as a pure ontology" de Coronado S et al. The NCI Thesaurus Quality Assurance Life Cycle. Journal of Biomedical Informatics 2009 Jan 22.
- But then why is it disseminated in OWL?
- If interpreted according to OWL semantics, systems using logical inference on NCIT axioms might become unreliable

## **Conclusion (beyond NCIT)**

- Main problem of thesaurus ontologization: term / concept representation → reality representation
- Consequences
  - labor-intensive if done manually
  - error-prone if done automatically
- Recommendations
  - don't "OWLize" a thesaurus it if there is no clear use case
  - use other Semantic Web standard, e.g. SKOS
  - in case there is a good reason for transforming to a formal ontology,
    - use a principled ontology engineering approach
    - use categories and relations from an upper-level ontology
    - invest in quality assurance measures

## Thanks

## Schulz et al.: The Pitfalls of Thesaurus Ontologization - the Case of the NCI Thesaurus

- Contact: steschu@gmail.com
- Funding: EC project "DebugIT" (FP7-217139)
- Thanks to reviewers who provided high quality and detailed recommendations