Biomedical and Health Informatics: From Foundations to Applications to Policy

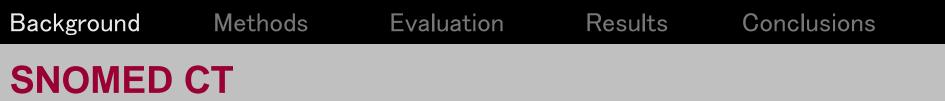
A 2009

SAN FRANCISCO 

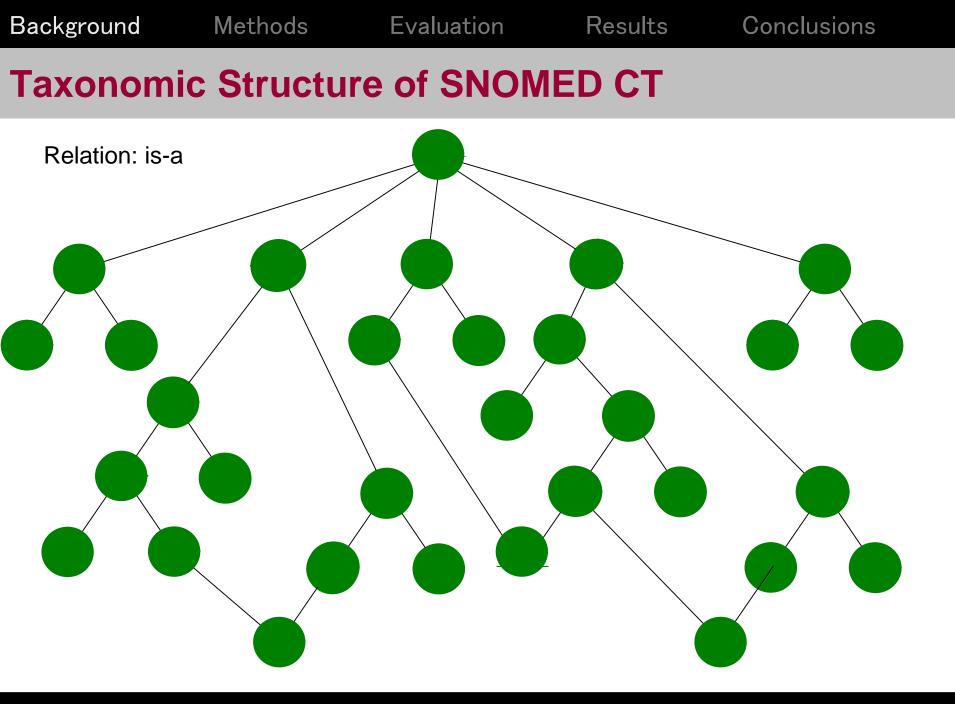
November 14-18

### Detection of underspecifications in SNOMED CT concept definitions using language processing

Edson Pacheco<sup>1,2</sup>, Holger Stenzhorn<sup>3</sup>, Percy Nohama<sup>1</sup>, Jan Paetzold<sup>3,4</sup>, Stefan Schulz<sup>2,3,4</sup>

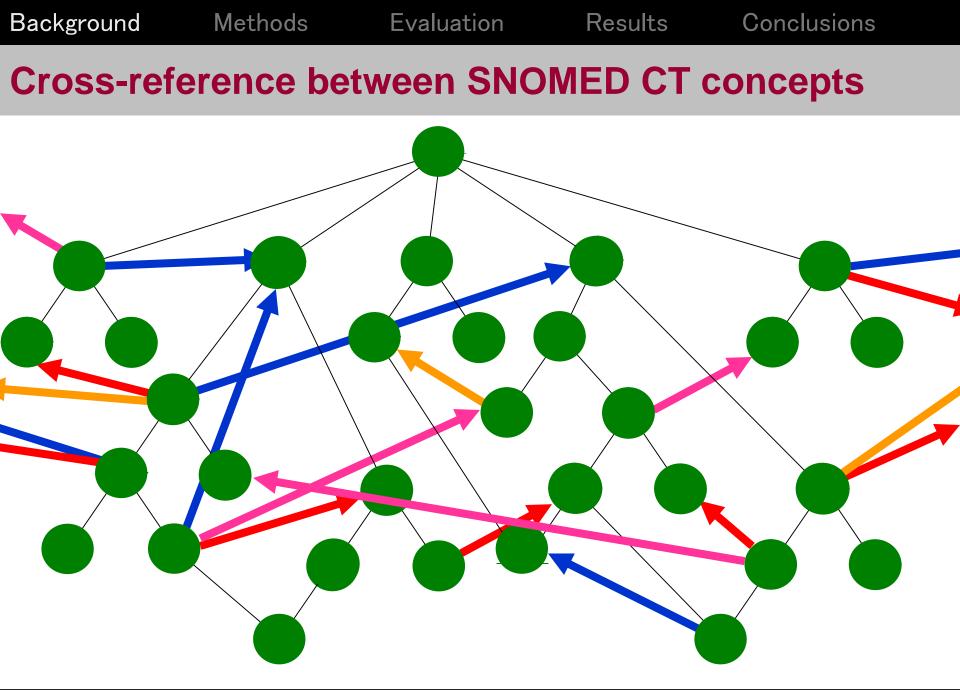

<sup>1</sup>Federal Technical University of Paraná (UTFPR), Curitiba, Brazil; <sup>2</sup>Pontifical Catholic University of Paraná (PUCPR), Curitiba, Brazil; <sup>3</sup>Institute of Medical Biometry und Medical Informatics, University Medical Center Freiburg; <sup>4</sup>AVERBIS GmbH, Freiburg, Germany









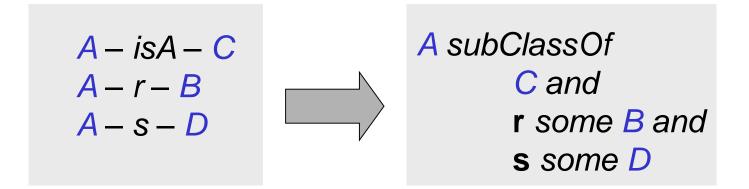

- "Standardized Nomenclature of Medicine Clinical Terms"
- Comprehensive clinical terminology (> 300,000 representational units)
- Concepts are arranged in extensive taxonomic (is-a) hierarchies



# Background Methods Evaluation Results Conclusions SNOMEDCT

- "Standardized Nomenclature of Medicine Clinical Terms"
- Comprehensive clinical terminology (> 300,000 representational units)
- Concepts are arranged in extensive taxonomic (is-a) hierarchies
- Cross-reference between concepts from several branches via semantic relations obeying description logics semantics




 Background
 Methods
 Evaluation
 Results
 Conclusions

 SNOMED CT semantics in a nutshell

 <t

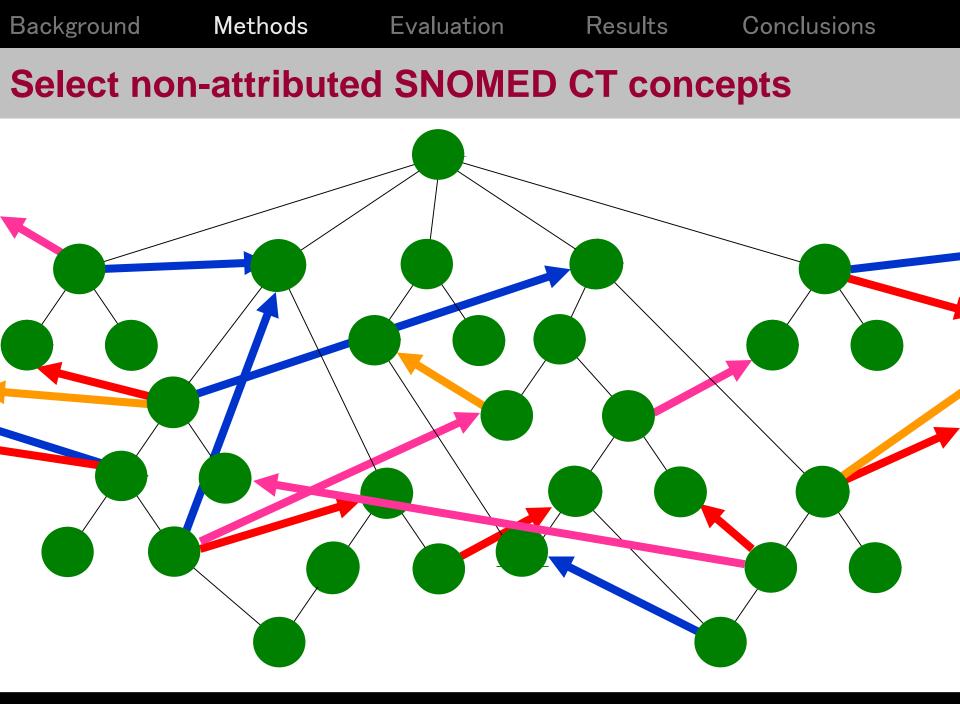
S

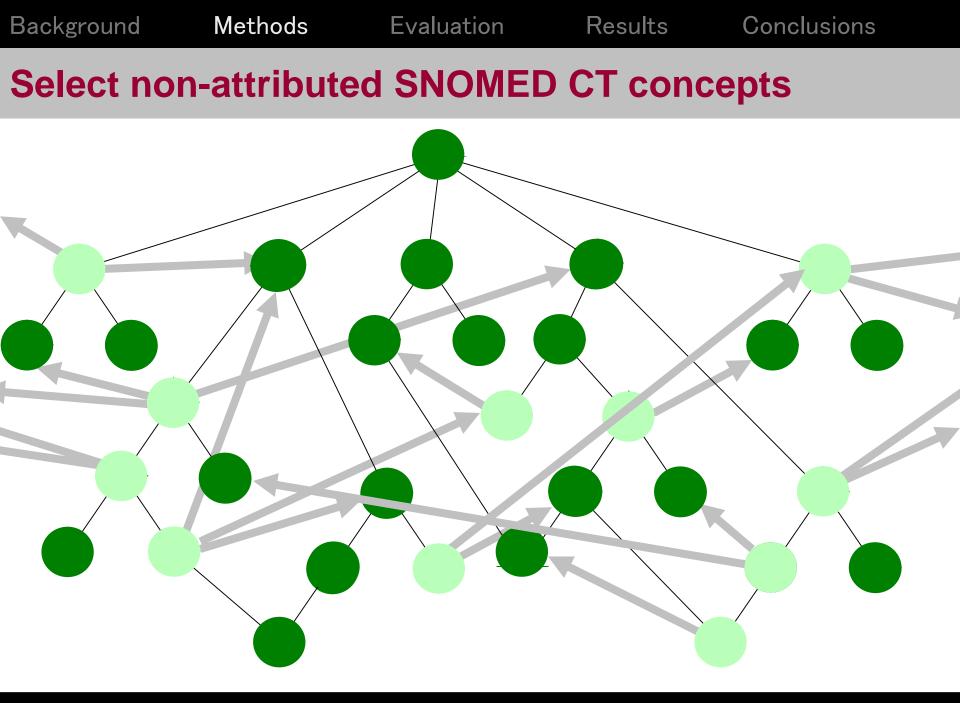
Δ



#### $\mathcal{FL} \neq$ description logics

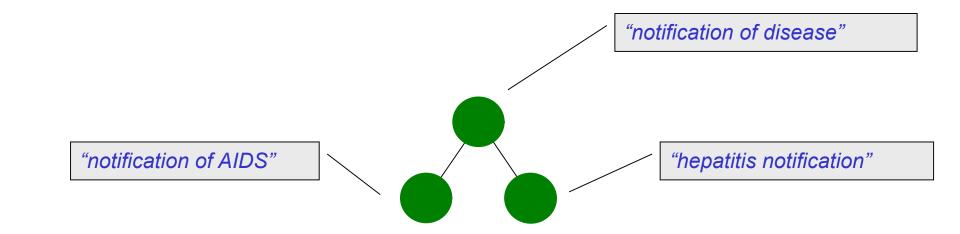
- "Standardized Nomenclature of Medicine Clinical Terms"
- Comprehensive clinical terminology ( > 300,000 representational units)
- Concepts are arranged in extensive taxonomic (is-a) hierarchies
- Cross-reference between concepts from several branches via semantic relations obeying description logics semantics
- Burden of terminology content maintenance and quality assurance


- "Standardized Nomenclature of Medicine Clinical Terms"
- Comprehensive clinical terminology ( > 300,000 representational units)
- Concepts are arranged in extensive taxonomic (is-a) hierarchies
- Cross-reference between concepts from several branches via semantic relations obeying description logics semantics
- Burden of terminology content maintenance and quality assurance
- To be supported by automated approaches


#### Looking for underspecifications of cross-linkage

- Nearly half (45.2%) of the SNOMED CT concepts (132,125) have no attributes.
- Textual descriptions suggest composed meanings
- Examples:
  - Cerebral function
    - only related to its parent *Nervous system function*
    - expected relation with Brain structure missing
  - Hepatitis notification
    - only related to its parent Disease notification
    - expected relation with *Inflammatory disease of liver* missing

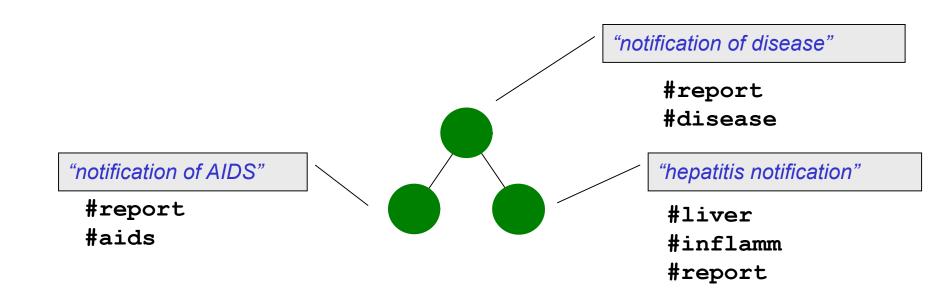
• Source: 01/2009 release of SNOMED CT


- Source: 01/2009 release of SNOMED CT
- Algorithm:
  - 1. Identify non-attributed concepts





- Source: 01/2009 release of SNOMED CT
- Algorithm:
  - 1. Identify non-attributed concepts
  - 2. Extract concept names



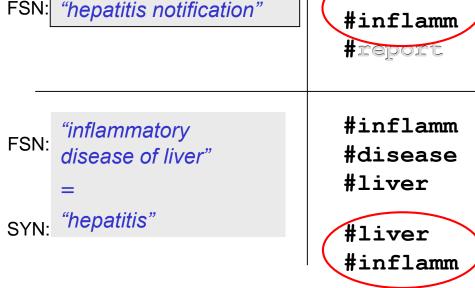



- Source: 01/2009 release of SNOMED CT
- Algorithm:
  - 1. Identify non-attributed concepts
  - 2. Extract concept names
  - 3. Perform semantic abstraction from word to sets of morphosemantic identifiers (MIDs)

#### **Perform morphosemantic abstraction**

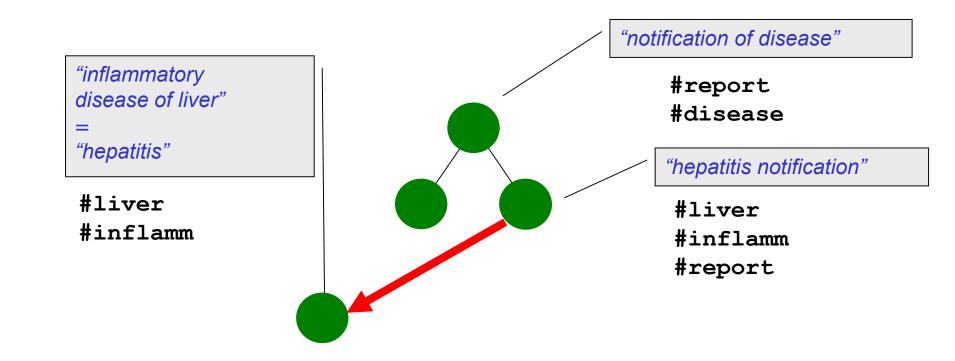
Using MorphoSaurus\* morphosemantic indexing




\*Markó K, Schulz S, Hahn U: MorphoSaurus - Design and Evaluation of an Interlingua-based, Cross-language Document Retrieval Engine for the Medical Domain. Meth Inf Med 4/2005(44): 537-545.

- Source: 01/2009 release of SNOMED CT
- Algorithm:
  - 1. Identify non-attributed concepts
  - 2. Extract concept names
  - 3. Perform semantic abstraction from word to sets of morphosemantic identifiers (MIDs)
  - 4. Compare MID sets between children and parents and reduce child sets

- Source: 01/2009 release of SNOMED CT
- Algorithm:
  - 1. Identify non-attributed concepts
  - 2. Extract concept names
  - 3. Perform semantic abstraction from word to sets of morphosemantic identifiers (MIDs)
  - 4. Compare MID sets between children and parents and reduce child sets
  - Match reduced child set against MID representations of all SNOMED descriptions


#### Methods Evaluation Results Conclusions Background Matching heuristics SNOMED MID description For the FSN MID set of every set non-attributed concept: **#report** "notification of disease" FSN: #disease remove MID that occurs in any of this concept's parents check whether the remainder #liver FSN: "hepatitis notification" set coincides with the MID #report representation of some other SNOMED CT concept, *"inflammatory"* considering all descriptions FSN:

- (FSNs, PTs, synonyms)
- consider this concept a refinement candidate



- Source: 01/2009 release of SNOMED CT
- Algorithm:
  - 1. Identify non-attributed concepts
  - 2. Extract concept names
  - 3. Perform semantic abstraction from word to sets of morphosemantic identifiers (MIDs)
  - 4. Compare MID sets between children and parents and reduce child sets
  - Match reduced child set against MID representations of all SNOMED descriptions
  - 6. Suggest candidates for refining attributes

#### **Addition of refinement candidate**



\*Markó K, Schulz S, Hahn U: MorphoSaurus - Design and Evaluation of an Interlingua-based, Cross-language Document Retrieval Engine for the Medical Domain. Meth Inf Med 4/2005(44): 537-545.

#### **Evaluation Methodology**

- For each of 14 SNOMED subhierarchies: random sample of 20 underspecified concepts, compared to attribute refinement candidate proposed by the system
- For each of the sample concept verify
  - 1. whether this concept should be refined
  - 2. whether one of the suggested refinement candidates can be plausibly used for refinement.
- Performed by two domain experts. Double rating for interrater agreement measurement: 25%

#### **Results of retrieval experiments**

#### **Results of retrieval experiments**

|                            | Non-attributed<br>Concepts |        |       | Refinement candidates |      | Analysis of samples(n=20) |         | Sample based<br>estimation |                  |
|----------------------------|----------------------------|--------|-------|-----------------------|------|---------------------------|---------|----------------------------|------------------|
|                            | Active                     | n      | %     | n                     | %    | refine-                   | correct | refinable                  | with             |
|                            | Concepts                   |        |       |                       |      | ment                      | suggest | concepts                   | correct          |
| SNOMED hierarchies         |                            |        |       |                       |      | justified                 | ion     |                            | suggest-<br>ions |
| Organism                   | 31840                      | 31840  | 100.0 | 4973                  | 15.6 | 0%                        | 0%      | 0                          | 0                |
| Substance                  | 23554                      | 23554  | 100.0 | 8627                  | 36.6 | 55%                       | 35%     | 4700                       | 3000             |
| body structure             | 25637                      | 22386  | 87.3  | 15076                 | 58.8 | 5%                        | 0%      | 800                        | 0                |
| qualifier value            | 8823                       | 8823   | 100.0 | 3533                  | 40.0 | 0%                        | 0%      | 0                          | 0                |
| observable entity          | 7885                       | 7885   | 100.0 | 3647                  | 46.3 | 70%                       | 50%     | 2600                       | 1800             |
| Finding                    | 32780                      | 5356   | 16.3  | 2253                  | 6.9  | 90%                       | 75%     | 2000                       | 1700             |
| physical object            | 4408                       | 4408   | 100.0 | 1339                  | 30.4 | 85%                       | 80%     | 1100                       | 1100             |
| morphologic<br>abnormality | 4297                       | 4289   | 99.8  | 2164                  | 50.4 | 80%                       | 60%     | 1700                       | 1300             |
| Occupation                 | 3843                       | 3843   | 100.0 | 1330                  | 34.6 | 75%                       | 10%     | 1000                       | 100              |
| Product                    | 19310                      | 3541   | 18.3  | 686                   | 3.6  | 100%                      | 60%     | 700                        | 400              |
| Event                      | 3578                       | 3529   | 98.6  | 447                   | 12.5 | 85%                       | 45%     | 400                        | 200              |
| Disorder                   | 63874                      | 2812   | 4.4   | 1080                  | 1.7  | 90%                       | 60%     | 1000                       | 600              |
| Procedure                  | 47764                      | 2256   | 4.7   | 1001                  | 2.1  | 85%                       | 65%     | 900                        | 700              |
| Others                     | 14511                      | 7603   | 52.4  | 2396                  | 16.5 | 75%                       | 60%     | 1800                       | 1400             |
| TOTAL                      | 292104                     | 132125 | 45.2  | 48552                 | 16.6 |                           |         | 18700                      | 12300            |

BackgroundMethodsEvaluationResultsConclusionsResults

- Interrater agreement (Kohen's kappa):
  - A concept should be refined: 0.55 (low !)
  - There is a proposed refinement candidate: 0.74
- Estimation: approximately 18,000 SNOMED CT concepts can be refined.
- Problematic suggestions:
  - Macaroni for Macaroni maker
  - Canada for Salmonella canada
  - Acyl carnitine for Acylcarnitine hydrolase
  - First for Female first cousin

(already fully defined by the intersection of *First cousin* and *Female cousin*)

## Background Methods Evaluation Results Conclusions Conclusions

- Many SNOMED CT concepts are underdefined and can / should be refined
- The proposed methodology was useful to detect underspecifications
- Large difference between SNOMED hierarchies re harvesting and approval of refinement candidates
- "Grey areas"
  - many proposed refinements are debatable
  - only part of refinement candidates not retrieved due to restrictions of the methodology
- Should be considered for future SNOMED CT editing policies

SAN FRANCISCO 

November 14-18

Biomedical and Health Informatics: From Foundations to Applications to Policy

#### Thank You! Contact:

AIA 2009

Stefan Schulz

http://purl.org/steschu

#### **Acknowledgements:**

*CNPq*, Brazil: 550830/2005-7

*BMBF-IB*, Germany: BRA05/022







