Stefan Schulz

University Medical Center, Freiburg, Germany

Elena Beisswanger

Language and Information Engineering Lab, Jena, Germany

Olivier Bodenreider

National Library of Medicine, Bethesda, MD, USA

László van den Hoek Erik M. van Mulligen

Erasmus Medical Center,

Rotterdam, The Netherlands

17th Annual International Conference on Intelligent Systems for Molecular Biology & 8th European Conference on Computational Biology

Alignment of the UMLS Semantic Network with BioTop Methodology and Assessment

Ontology Alignment

- Linking two ontologies by detecting semantic correspondences between their representational units
- Types of correspondences: equivalence, subsumption, others
- Purpose of ontology alignment:
 - Creating interoperability between semantically annotated data
 - Enriching semantics
 - Cross-Validation of ontologies
- Requirements of ontology alignment:
 - comparable scope
 - comparable context
 - comparable semantic foundations

- Introduction
 - ВіоТор
 - UMLS SN
- Methodology
 - UMLS SN: formal redefinition
 - Interactive Mapping
- Assessment
 - Ontology Cross-Validation
 - NE co-occurrence validation
 - UMLS SN cluster consistency
- Conclusion

• Introduction

- ВіоТор
- UMLS SN
- Methodology
 - UMLS SN: formal redefinition
 - Interactive Mapping
- Assessment
 - Ontology Cross-Validation
 - NE co-occurrence validation
 - UMLS SN cluster consistency
- Conclusion

BioTop – a Life Science Upper Ontology

- Recent development (starting 2006, Freiburg & Jena)
- Goal: to provide formal definitions of upper-level types and relations for the biomedical domain
- Uses description logics (OWL-DL)
 - 339 classes, 60 relation types
 - 373 subclass axioms
 - 80 equivalent class axioms, 66 disjoint class axioms
- Compatible with BFO and DOLCE lite
- links to OBO ontologies
- downloadable from: http://purl.org/biotop

UMLS Semantic Network (SN)

- Upper-level semantic categorization framework for all (~1 M) concepts of the UMLS Metathesaurus
- Tree of 135 semantic types

 (e.g. *Tissue*, *Diagnostic_Procedure*)
- 53 associative relationships (e.g., *treats*, *location_of*)

Unified Medical Language System (UMLS): Metathesaurus links over 100 biomedical vocabularies

- 612 relational assertions (triples), sanctioning the domain and range of relations {*Tissue*; *location_of*; *Diagnostic_Procedure*}
- mainly unchanged in the last 20 years

UMLS Semantic Network (SN)

Comparison UMLS-SN - BioTop

		UMLS-SN	ВіоТор
Types / Classes		135	339
Relation Types		53	60 (object properties)
Axioms		612	509
Semantics		Implicit Frame-like Closed-world (?)	Explicit (description logics) Set-theoretic Open-world
Class subsumption	Ē	+	+
Relation subsumption	Ē	+	+
Domain / Range Restrictions		+	+
Relation Inheritance blocking		+	—
Full Definitions	Ξ	—	+
Disjoint Partitions		—	+
Negations	-	—	+
Existential Restrictions	Э	—	+
Value Restrictions	A	—	+

- Introduction
 - ВіоТор
 - UMLS SN
- Methodology
 - UMLS SN: formal redefinition
 - Interactive Mapping
- Assessment
 - Ontology Cross-Validation
 - NE co-occurrence validation
 - UMLS SN cluster consistency
- Conclusion

- Introduction
 - ВіоТор
 - UMLS SN

Methodology

- UMLS SN: formal redefinition
- Interactive Mapping

Assessment

- Ontology Cross-Validation
- NE co-occurrence validation
- UMLS SN cluster consistency
- Conclusion

Assessment

Methodology

- Prerequisite: provide description logics semantics to the UMLS SN: umlssn.owl
- 2. Building a bridging ontology
 - Subsumption \blacksquare
 - Equivalence ≡

Redefinition of UMLS SN semantics

Redefinition of UMLS SN semantics

- **Semantic Types**, e.g.: *Tissue*, *Diagnostic_Procedure*:
 - Types extend to classes of individuals
 - subsumption hierarchies = is-a hierarchies (every instance of a child is also an instance of each parent)
 - no explicit disjoint partitions
- **Semantic Relations**, e.g.: *treats*, *location_of*:
 - Reified as classes, **not** represented as OWL object properties
- **Triples**, e.g.: {*Tissue*; *location_of*; *Diagnostic_Procedure*}
 - domain and range restrictions = value restrictions on the roles
 has-domain and has-range

Methodology Assessment Conclusion

UMLS SN: Why SRs as classes ...

and not OWL object properties? (I)

treats Domain	Disease	Person
Drug	allowed	disallowed
Physician	disallowed	allowed

 \exists has domain. *Physician* $\sqcap \exists$ has range. *Person* \sqcap TreatingPerson \equiv Action \sqcap ∀ has_domain. *Physician* ⊓ ∀ has_range.*Person*

TreatingDisease \equiv *Action* $\sqcap \exists$ has_domain.*Drug* $\sqcap \exists$ has_ range.*Disease* \sqcap \forall has_domain.*Drug* $\sqcap \forall$ has_ range. *Disease*

Treating *TreatingPerson* \sqcup *TreatingDisease*

UMLS SN: Why SRs as classes ...

and not OWL object properties? (II)

•	Source Represen	itation			"Defined not Inherited")
	Idea_or_Concept	conceptual_	part_of	Behavior		
•	Target Represent	tation				
	Conceptual_part_of_Domain_Idea_Or_Concept_Range_ Behavior_Rest_Class ⊑ Conceptual_part_of ⊓ ∀ has_domain. Idea_Or_Concept_Rest_Class ⊓ ∀ has_range. Behavior_Rest_Class					
	Idea_Or_Concept_Rest	<u>'</u> Class ≡	Idea_Or_ → Qualita → Spatia	_Concept п ¬ Te ative_Concept п I_Concept п ¬ F	mporal_Concept ⊓ ¬ Quantitative_Cor Functional_Concept	n cept 17 t
	Behavior_Rest_Class	Ξ	Behavio	r ⊐ Individual_l ⊐ Social_Beh	Behavior ⊓ navior	

Representation of SRs and triples

• All triples including R are defined as subclasses of R

Affects_Domain_Cell_Component_Range_Physiologic_Function ⊑ Affects ⊓ ∀ has_domain. Cell_Component ⊓ ∀ has_range. Physiologic_Function

• All parents are fully defined by the union of their children

Brings_About \equiv Produces \sqcup Causes

Mapping

Mapping

- Fully manually, using Protégé 4, consistency check with Fact++ and Pellet 1.5, supported by explanation plugin*
- Analyzing
 - UMLS SN hierarchies and free-text definitions
 - BioTop formal and free-text definitions
- Iterative check of
 - logic consistency (DL classifier)
 - domain adequacy (analysis of new entailments)

*(Horridge ISWC 2008)

Assessment

Mapping workflow

Mapping of UMLS Types

- **Direct Match** (often after content addition to BioTop): *sn:Plant* = *bt:Plant*
- Restriction mapping:

sn:AnatomicalAbnormality ≡ bt:OrganismPart ⊓ ∃□ bt:bearerOf.bt:PathologicalCondition

• Union:

 $sn:Gene_Or_Genome \equiv bt:Gene \sqcup bt:Genome.$

Out of scope

sn:Daily_Or_Recreational_Activity \subseteq bt:Action $\pi \exists \Box$ bt:hasParticipant.bt:Human

No mapping

sn:Idea_or_concept

Mapping of UMLS Relations

• Mapping of domain and range

sn:hasDomain	≡	bt:hasAgent
sn:hasRange	≡	bt:hasPatient

• Mapping of (reified) SN relations

sn:Affects≡ *bt:Affecting*

Linkage of (reified) SN relations to BioTop relations by augmented restrictions:

sn:hasDomain ∀ (bt:physicalPartOf ∀ (ImmaterialPhysicalEntity ⊔ MaterialEntity)) ⊓ sn:hasRange ∀ (bt:hasPhysicalPart ∀ (ImmaterialPhysicalEntity ⊔ MaterialEntity))

- Introduction
 - ВіоТор
 - UMLS SN
- Methodology
 - UMLS SN: formal redefinition
 - Interactive Mapping
- Assessment
 - Ontology Cross-Validation
 - NE co-occurrence validation
 - UMLS SN cluster consistency
- Conclusion

- Introduction
 - ВіоТор
 - UMLS SN
- Methodology
 - UMLS SN: formal redefinition
 - Interactive Mapping

Assessment

- Ontology Cross-Validation
- NE co-occurrence validation
- UMLS SN cluster consistency
- Conclusion

Assessment: Cross-evaluation

- Formative evaluation of BioTop: Mapping and subsequent classification unveils hidden problems in BioTop:
 - Faulty disjointness axioms (e.g. *bt:Organic Chemical* was disjoint from *bt:Carbohydrate*)
 - ambiguities: Sequence as information entity vs. sequence as molecular structure
 - granularity mismatches:
 e.g. Chromosome as molecule

Assessment: NE co-occurrences

Named Entity tagging, UMLS concept pairs identified in 15 M PubMed abstracts

Semantic Type 1: UMLS ID	NE 1	Semantic Type 2: UMLS ID	NE 2
Enzyme:C0916840	superoxide reductase	Organic_Chemical:C0001992	aldehyde
Finding:C0883391	free testosterone index	Laboratory_Procedure:C0020980	immunoassay
Food:C1145642	sorghum	Invertebrate:C0009276	beetles
Functional_Concept:C0332240	idiopathic	Pharmacologic_Substance:C0011685	desipramine
Functional_Concept:C1510670	feeds	Intellectual_Product:C0023683	life table
Gene_or_Genome:C0087142	v-Jun	Mammal:C0025920	СЗН
Gene_or_Genome:C0600449	essential gene	Hazardous_or_Poisonous_Substance:C0000511	4-nitroquinolone-1-oxide
Geographic_Area:C0027978	New Zealand	Idea_or_Concept:C0018741	health resources
Hazardous_or_Poisonous_Substance:C0036 248	stx	Organic_Chemical:C0000967	acetal

Expert rating with sample of co-occurrences: which are semantically related?

Assessment: NE co-occurrences

		Expert judgment: should be related (52)	Expert judgment: Should not be related (93)
matching against SN triplets	SN: sanctioned	31	22
	SN: unsanctioned	21	71
Description logics classification	SN-BioTop: accepted	52	90
	SN-BioTop: rejected	0	3

- Using SN alone: very low agreement with expert rating
- Using SN+BioTop: very few rejections (only 3)
- Reasons:
 - false-positive rate: Expert rating done on NE (e.g. Superoxide reductase unrelated with Aldehyde), but system judgments at type level: sn:Enzyme related to sn:Organic Chemical
 - few rejections: DL's open world semantics

IntroductionMethodologyAssessmentConclusionAssessment: finding incompatible semantictypes

- Each UMLS concept is categorized by one or more UMLS SN types
- 397 different SN type combinations
- Using UMLS-SN BioTop Bridge: 133 combinations inconsistent, affecting 6116 UMLS concepts
- Main reason: hidden ambiguities, e.g.

sn:Manufactured Object II sn:HealthCareRelatedOrganization

(e.g. *Hospital* as building vs. organization).

- Introduction
 - ВіоТор
 - UMLS SN
- Methodology
 - UMLS SN: formal redefinition
 - Interactive Mapping
- Assessment
 - Ontology Cross-Validation
 - NE co-occurrence validation
 - UMLS SN cluster consistency
- Conclusion

- Introduction
 - ВіоТор
 - UMLS SN
- Methodology
 - UMLS SN: formal redefinition
 - Interactive Mapping
- Assessment
 - Ontology Cross-Validation
 - NE co-occurrence validation
 - UMLS SN cluster consistency
- Conclusion

Conclusion

- Sucessful alignment between the (legacy) SN and the (novel) BioTop ontology
- Necessary: formal re-interpretation of SN
- Prospect: join large amount of data annotated by the SN with formal rigor of BioTop
- Strength: machine inference, consistency checking
- Challenge: Antagonize unwarranted effects of the open world semantics by making exhaustive use of disjoint partitions
- More use cases !

Acknowledgements

- EC STREP project "BOOTStrep" (FP6 028099)
- Intramural Research Program of the National Institutes of Health (NIH), US National Library of Medicine
- Martin Boeker (Freiburg)
- Holger Stenzhorn (Freiburg)
- Anonymous Reviewers

Stefan Schulz

University Medical Center, Freiburg, Germany

Elena Beisswanger

Language and Information Engineering Lab, Jena, Germany

Olivier Bodenreider

National Library of Medicine, Bethesda, MD, USA

László van den Hoek Erik M. van Mulligen

Erasmus Medical Center, Rotterdam, The Netherlands 17th Annual International Conference on Intelligent Systems for Molecular Biology & 8th European Conference on Computational Biology

Alignment of the UMLS Semantic Network with BioTop Methodology and Assessment

