FMA in OWL meeting November 12-13, 2009, Stanford University

The Foundational Model of Anatomy and its Ontological Commitment(s)

Stefan Schulz

University Medical Center, Freiburg, Germany

Ontological commitment

- "Agreement about the ontological nature of the entities being referred to by the representational units in an ontology" (modified definition following Gruber 93)
- Formal ontologies: subsumption and equivalence statements are either true or false
- Problem: truth-value of logical expressions depend on their interpretation re domain that they represent

Key questions for ontology engineering

- What are the particulars that are instantiated by ontology classes / concepts / types
- What are those entities dependent on (without what can't they exist)
- When do they come into / go out of existence
- Is it with respect to a certain perspective (granularity) that an entity can be referred to?

Alan Ruttenberg, tutorial at ICBO 2009

How to analyze FMA commitments

- Subjects to analysis: FMA triplets $(T1_{FMA} r_{FMA} T2_{FMA})$
- Type interpretation:
 - T1 and T2 are types.
 - All instances of T1 are related to at least one instance of T2 by r
 - In OWL: T1 subClassOf r some T2
- Instance interpretation
 - T1 and T2 are instances (particulars)
 - (**T1**, **T2**) is in the extension of the relation **r**
- Special case: $r = isa_{FMA}$
 - T1 and T2 are types
 - **T1** is a particular and *T2* is a type
- DL: classes/types and instances/particulars mutually exclusive

Discussion Introduction Examples Conclusions

Example 1:Universal statement about right thumbs

Right Thumb_{FMA} part_of_{FMA} Right Hand_{FMA} ≡

Right Thumb subClassOf part_of some Right Hand

True	False
All right thumbs that are part of a living organism	Severed right thumbs

Example 2a:Universal statement about right hands

Right Hand_{FMA} has_part_{FMA} Right Thumb_{FMA} ≡

Right Hand subClassOf has_part some Right Thumb

True	False
All "canonic" right hands Some non-canonic right hands	Some non-canonic right hands (those with no thumbs)

Example 2b: Assertion about individuals

Right Hand_{FMA} has_part_{FMA} Right Thumb_{FMA} ≡

Individual: Right Thumb; Facts: part_of Right Hand

Individual: Right Hand; Facts: has_part Right Thumb

(no universal statement)

True	False
 Right hand and thumb of one canonical individual Information artifact: 2D or 3D representation graph representation 	Classes of "real" hands and thumbs

Example 3:Universal statement about information artifacts

Right Border of Heart_{FMA} isa_{FMA} Cardiac Border_{FMA} ≡

Right Border of Heart subClassOf Cardiac Border

True	False
Information artifacts: Radiological images of the thorax	"Real" hearts (hearts do not have borders)

Example 4:Type assignment to a natural language entity

Right border of heart viewed radiologically_{FMA} isa_{FMA} $General \ Anatomical \ Term_{FMA} \equiv$

Individual: Right border of heart viewed radiologically

Type: General Anatomical Term

True	False
Natural language entities (terms)	Hearts, borders

Introduction Examples Discussion Conclusions

Possible interpretation of FMA terms

- Types of canonical anatomical objects
- Types of anatomical objects, regardless whether canonical or non-canonical
- Particulars pertaining to one ideal human body
- Information artifacts
 - 2D representations: atlas images, radiological images
 - 3D representations: computer models of anatomy
 - mathematical graphs
 - entities of natural language

Introduction Examples Discussion Conclusions

Conclusions

- FMA axioms suggest different and competing ontological commitments
- The same FMA type may be used in different senses:
 - Muscle_{FMA} has_part_{FMA} Belly of skeletal muscle_{FMA}
 - Muscle_{FMA} isa_{FMA} General anatomical term_{FMA}
- Assignment of truth values to FMA expressions is impossible as long the ontological commitment of FMA types is controversial