16th Annual International Conference on Intelligent Systems for Molecular Biology

Stefan Schulz Holger Stenzhorn Martin Boeker

The Ontology of Biological Taxa

University Medical Center Freiburg (Germany) Institute of Medical Biometry and Medical Informatics

Biological Taxa: Definition

Biological Taxa: Definition

- Taxa (singular taxon): Hierarchically structured labels or ranks used for biological classification
- Taxa can be attributed to organisms, populations, tissues, cells, cell components, and biological macromolecules
- Most biological discourse is related to some taxa
- Clarification taxa vs. species

Examples for Taxa

Taxon (Rank)	Chimpanzee	Asian Elephant	Drosophila
Kingdom	Animalia	Animalia	Animalia
Phylum	Chordata	Chordata	Arthropoda
Subphylum	Vertebrata	Vertebrata	
Class	Mammalia	Mammalia	Insecta
Order	Primates	Proboscidea	Diptera
Superfamily		Elephantoidea	
Family	Hominides	Elephantidae	Drosophilidae
Subfamily			Drosophilinae
Genus	Pan	Elephas	Drosophila
Species	Simia	Elephas maximus	Drosophila
	troglodytes		melanogaster

Taxa and biomedial vocabularies

- MeSH:
- Catalogue of Life:
- NCBI taxonomy:
- UNIPROT:
- SNOMED CT:

- 3,497 entries
- 1.75 M species by 2011
- 500,000 entries
- 17,467 entries
- 27,400 entries
- OBO: 30 out of 66 ontologies are taxon-specific
- Nonspecific OBO ontologies:
 - GO : "spore wall assembly (sensu Fungi)"
 "male tail morphogenesis (sensu Nematoda)"
 - CL: "non-visual cell (sensu Vertebrata)"
 "chemotactic amoeboid cell (sensu Mycetozoa)"

The difficult concept of Species

- No agreement on proper definition of the term "species" and its ontological status
- 22 different conceptualizations of species
- Popular: "group of organisms that can interbreed and produce fertile offspring (Mayr, 1969) "
- Theoretical sound, difficult to apply, not generally valid
- Our approach: biological taxa need to be accounted for in biomedical ontologies, let alone whether they exist in nature or are merely (fiat) attributions by biologists

Basic stipulations on ontologies

Domain (Particulars)

Basic stipulations on ontologies

Basic stipulations on ontologies

Basic stipulations on ontologies

How to represent biological taxa?

How to represent biological taxa?

1. Meta-Properties

How to represent biological taxa?

1. Meta-Properties

- + Intuitive
- Instances of instances cannot be expressed by common representational formalisms (OWL, OBO)

How to represent biological taxa?

1. Meta-Properties

- + Intuitive
- Instances of instances cannot be expressed by common representational formalisms (OWL, OBO)
- 2. Supertypes:

How to represent biological taxa?

1. Meta-Properties

- + Intuitive
- Instances of instances cannot be expressed by common representational formalisms (OWL, OBO)

2. Supertypes:

- + Intuitive
- Unintended inferences

How to represent biological taxa?

1. Meta-Properties

- + Intuitive
- Instances of instances cannot be expressed by common representational formalisms (OWL, OBO)

2. Supertypes:

- + Intuitive
- Unintended inferences
- 3. Population instances

How to represent biological taxa?

1. Meta-Properties

- + Intuitive
- Instances of instances cannot be expressed by common representational formalisms (OWL, OBO)

2. Supertypes:

- + Intuitive
- Unintended inferences

3. **Population instances**

- + Allows instantiation of abstract nodes (taxon, species, family...)
- Requires A-Box extension (not expressible in OBO),
- Only representation of organisms.

How to represent biological taxa?

1. Meta-Properties

- + Intuitive
- Instances of instances cannot be expressed by common representational formalisms (OWL, OBO)

2. Supertypes:

- + Intuitive
- Unintended inferences

3. Population instances

- + Allows instantiation of abstract nodes (taxon, species, family...)
- Requires A-Box extension (not expressible in OBO),
- Only representation of organisms.

4. Qualities

Qualities in Upper Ontologies

- BFO : "A dependent continuant that is exhibited if it inheres in an entity or categorical property. Examples: the color of a tomato, the ambient temperature of air, the circumference shape of a nose, the mass of a piece of gold, the weight of a chimpanzee"
- DOLCE : "...the basic entities we can perceive or measure: shapes, colors, sizes, sounds, smells, as well as weights, lengths, electric charges"
- The relation *inheres_in* links qualities to their bearers

How to represent biological taxa?

1. Meta-Properties

- + Intuitive
- Instances of instances cannot be expressed by common representational formalisms (OWL, OBO)

2. Supertypes:

- + Intuitive
- Unintended inferences

3. Population instances

- + Allows instantiation of abstract nodes (taxon, species, family...)
- Requires A-Box extension (not expressible in OBO),
- Only representation of organisms.

4. Qualities

- + Flexible and intuitive
- No place for abstract nodes

How to represent biological taxa?

1. Meta-Properties

- + Intuitive
- Instances of instances cannot be expressed by common representational formalisms (OWL, OBO)

2. Supertypes:

- + Intuitive
- Unintended inferences

3. Population instances

- + Allows instantiation of abstract nodes (taxon, species, family...)
- Requires A-Box extension (not expressible in OBO),
- Only representation of organisms.

4. Qualities

- + Flexible and intuitive
- No place for abstract nodes
- 5. Qualia

How to represent biological taxa?

1. Meta-Properties

- + Intuitive
- Instances of instances cannot be expressed by common representational formalisms (OWL, OBO)

2. Supertypes:

- + Intuitive
- Unintended inferences

3. Population instances

- + Allows instantiation of abstract nodes (taxon, species, family...)
- Requires A-Box extension (not expressible in OBO),
- Only representation of organisms.

4. Qualities

- + Flexible and intuitive
- No place for abstract nodes

- + Abstract nodes can be represented as quality regions
- Complex representation

Preferred Representations

Preferred Representations

- 1. Meta-Properties
 - + Intuitive
 - Instances of instances cannot be expressed by common representational formalisms (OWL, OBO)
- 2. Supertypes:
 - + Intuitive
 - Unintended inferences

Preferred Representations

1. Meta-Properties

- + Intuitive
- Instances of instances cannot be expressed by common representational formalisms (OWL, OBO)
- 2. Supertypes:
 - + Intuitive
 - Unintended inferences

3. Population instances

- + Allows instantiation of abstract nodes (taxon, species, family...)
- Requires A-Box extension (not expressible in OBO),
- Only representation of organisms.

4. Qualities

- + Flexible and intuitive
- No place for abstract nodes

- + Abstract nodes can be represented as quality regions
- Complex representation

Preferred Representations

1. Meta-Properties

- + Intuitive
- Instances of instances cannot be expressed by common representational formalisms (OWL, OBO)

2. Supertypes:

- + Intuitive
- Unintended inferences

3. Population instances

+ Allows instantiation of abstract nodes (taxon, species, family...)

"BFO"

- Requires A-Box extension (not expressible in OBO),
- Only representation of organisms.

4. Qualities

- + Flexible and intuitive
- No place for abstract nodes

- + Abstract nodes can be represented as quality regions
- Complex representation

Preferred Representations

1. Meta-Properties

- + Intuitive
- Instances of instances cannot be expressed by common representational formalisms (OWL, OBO)
- 2. Supertypes:
 - + Intuitive
 - Unintended Inferences

3. Population instances

+ Allows instantiation of abstract nodes (taxon, species, family...)

"DOLCE"

- Requires A-Box extension (not expressible in OBO),
- Only representation of organisms.

4. Qualities

- + Flexible and intuitive
- No place for abstract nodes

- + Abstract nodes can be represented as quality regions
- Complex representation

Summary

- Favored representation: Taxa are qualities
- Two flavors:
 - Subtype hierarchies of qualities
 - Inclusion hierarchies of quality regions
- Compatible with OBO / OWL-DL
- Qualities can inhere in populations, organisms, body parts, biomolecules (*"sensu"*)
- Compatible with Mayr's concept of species as populations: each taxon quality corresponds to exactly one group of organisms

Use cases

- Embedded in top-level ontology BioTop
- Demonstration taxon quality hierarchy "taxdemo" in http://purl.org/biotop
- NCBI taxonomy converted into OWL-DL taxon quality hierarchy (Dumontier Lab, Carleton University, Canada)
- Suggested formalism for the organism hierarchy redesign of SNOMED CT

The Ontology of Biological Taxa

Stefan Schulz Holger Stenzhorn Martin Boeker

Acknowledgements:

Alan Rector, Manchester Michel Dumontier, Ottawa anonymous reviewers