MedInfo 2007 Workshop: MedSemWeb 2007

What Semantics Do We Need for A Semantic Web for Medicine?

How much formality do we need?

Stefan Schulz

University Medical Center Freiburg, Medical Informatics, Freiburg, Germany

Example

- Using Semantic Web standards (OWL-DL)
- Using Biomedical Ontology standards (OBO)
- Terminological Inference

Classes

Amino Acid

Protein

Aminoaciduria

Proteinuria

Relations (OBO RO)

- hasPart / partOf
 (parthood in a broad sense):
 relates continuants
- hasLocation / locationOf
 relates continuants or occurrents with continuants
- transitive, reflexive, antisymmetric

Description Logic \mathcal{EL}^+

- Subsumption ⊑
- Equivalence ≡
- Existential quantification ∃
- Conjunction □
- transitive roles

Axioms

Protein

∃hasPart.AminoAcid

```
Aminoaciduria \equiv Disorder \sqcap \exists hasLocation.(Body \sqcap \exists hasPart.(PortionOfUrine \sqcap \exists hasPart.AminoAcid))
```

Proteinuria ≡ Disorder \sqcap ∃hasLocation.(Body \sqcap ∃hasPart.(PortionOfUrine \sqcap ∃hasPart.Protein))

<u>Inference</u>

false!

Proteinuria ⊑ Aminoaciduria

(since Proteins have Amino Acids as parts, and partOf is transitive)

- Is this error due to formal underspecification?
- Is hasPart not always transitive?

Formal correctness but ontological sloppyness

AminoAcid: hidden ambiguity:

- AminoAcidSingleMolecule
- AminoAcidResidue
- AminoAcidSingleMoleculeCollection
 - AminoAcidSingleMoleculeCollectionLowConc
 - AminoAcidSingleMoleculeCollectionHighConc

Corrected Axioms

```
Aminoaciduria ≡ Disorder ⊓
```

- ∃hasLocation.(Body □
 - ∃hasPart.(PortionOfUrine □
 - ∃hasPart.AminoAcidSingleMoleculeCollectionHighConc))

```
Proteinuria ≡ Disorder ⊓
```

- ∃hasLocation.(Body □
 - ∃hasPart.(PortionOfUrine □
 - ∃hasPart.ProteinMoleculeCollectionHighConc))

Two sides of the same coin

Formal Correctness

Ontological Correctness

assures consistency

assures adequacy

Conclusion

- Even little formality must be rooted in a correct ontological foundation to prevent unintended models with inadequate inferences
- If we do not know exactly what we are formalizing we cannot rely on machine reasoning. In this case we should give preference to informal, thesaurus-like knowledge representations