

International Workshop - November 8, 2006 in Baltimore, MD, USA

"Biomedical Ontology in Action"

"Lmo-2 interacts with Elf-2" On the Meaning of Common Statements in Biomedical Literature

Stefan Schulz

Department of Medical Informatics, Freiburg University Hospital, Germany

Ludger Jansen

Department of Philosophy, University of Rostock, Germany

Background: Research in Molecular Biology on Protein Interactions

Protein-Protein Interactions

Interaction:

- Binding
- Upregulation
- Downregulation
- Activation
- Inhibition
- Phosphorylation
- O ...

Relevance for Ontology in Practice ??

- Huge amount of data on protein-proteininteractions
- Vast majority of this data stored in printed journal articles
- Use of text mining approaches
- Text mining typically fills template such as:

```
[Interaction, Protein1, Protein2] [Binding, Lmo-2, Elf-2]
```

Is this an issue of Ontology in Practice?

"Lmo-2 interacts with Elf-2"

"Lmo-2 interacts with Elf-2"

- "Lmo-2" may refer to
 - One single Lmo-2 molecule

- "Lmo-2" may refer to
 - One single Lmo-2 molecule
 - Some amount of Lmo-2,
 e.g. in an experiment

- "Lmo-2" may refer to
 - One single Lmo-2 molecule
 - Some amount of Lmo-2,e.g. in an experiment
 - The collection of all Lmo-2 molecules in the world

- "Lmo-2" may refer to
 - One single Lmo-2 molecule
 - Some amount of Lmo-2,
 e.g. in an experiment
 - The collection of all Lmo-2 molecules in the world
 - The mental representation of "Lmo-2"

- "Lmo-2" may refer to
 - One single Lmo-2 molecule
 - Some amount of Lmo-2,
 e.g. in an experiment
 - The collection of all Lmo-2 molecules in the world
 - The mental representation of "Lmo-2"
 - The universal (type) "Lmo-2"

"Lmo-2 interacts with Elf-2"

 There is one interaction event which involves one single Lmo-2 molecule and one single Elf-2 molecule

 There is one interaction event which involves one single Lmo-2 molecule and one single Elf-2 molecule

2. There is one interaction event which involves an amount of Lmo-2 and an amount of Elf-2

- There is one interaction event which involves one single Lmo-2 molecule and one single Elf-2 molecule

2. There is one interaction event which involves an amount of Lmo-2 and an amount of Elf-2

3. There is one interaction event which involves one single Lmo-2 molecule and an amount of Elf-2

- There is one interaction event which involves one single Lmo-2 molecule and one single Elf-2 molecule
- 2. There is one interaction event which involves an amount of Lmo-2 and an amount of Elf-2
- 3. There is one interaction event which involves one single Lmo-2 molecule and an amount of Elf-2
- 4. There is one interaction event which involves an amount of Lmo-2 and an single Elf-2 molecule

1. There are multiple interactions which pairwise involve single Lmo-2 molecules and single Elf-2 molecules

 There are multiple interactions which pairwise involve single Lmo-2 molecules and single Elf-2 molecules

2. There are multiple interactions which involve amounts of Lmo-2 and amounts of Elf-2

- 1. There are multiple interactions which pairwise involve single Lmo-2 molecules single Elf-2 molecules
- 2. There are multiple interactions which involve amounts of Lmo-2 and amounts of Elf-2
- 3. There are multiple interactions each of which involves one single Lmo-2 molecule and an amount of Elf-2

- 1. There are multiple interactions which pairwise involve single Lmo-2 molecules single Elf-2 molecules
- 2. There are multiple interactions which involve amounts of Lmo-2 and amounts of Elf-2
- There are multiple interactions each of which involves one single Lmo-2 molecule and an amount of Elf-2
- There are multiple interactions each of which involves an amount of Lmo-2 and one single Elf-2 molecule

Generic Interpretations?

All Lmo-2 molecules interact with some
 Elf-2 molecule

- All Lmo-2 molecules interact with some Elf-2 molecule
- All amounts of Lmo-2 interact with some amount of Elf-2

- All Lmo-2 molecules interact with some Elf-2 molecule
- 2. All amounts of Lmo-2 interact with some amount of Elf-2
- All Lmo-2 molecules interact with some amount of Elf-2

- All Lmo-2 molecules interact with some Elf-2 molecule
- 2. All amounts of Lmo-2 interact with some amount of Elf-2
- 3. All Lmo-2 molecules interact with some amount of Elf-2
- 4. All amounts of Lmo-2 interact with some Elf-2 molecule

- All Lmo-2 molecules interact with some Elf-2 molecule
- 2. All amounts of Lmo-2 interact with some amount of Elf-2
- 3. All Lmo-2 molecules interact with some amount of Elf-2
- 4. All amounts of Lmo-2 interact with some Elf-2 molecule

"Lmo-2 interacts with Elf-2": Generic interpretations by introducing new event types

All instances of Lmo-2/Elf-2 Interaction
 have one Lmo-2 and one Elf-2 molecule
 as participants

"Lmo-2 interacts with Elf-2": Generic interpretations by introducing new event types

All instances of Lmo-2/Elf-2 Interaction
 have one Lmo-2 and one Elf-2 molecule
 as participants

"Lmo-2 interacts with Elf-2": Generic interpretations by introducing new event types

All instances of Lmo-2/Elf-2 Interaction
 have one Lmo-2 and one Elf-2 molecule
 as participants

All instances of *Lmo-2/Elf-2 Interaction* have one amount of Lmo-2 and one amount of Elf-2 as participants

3. (...)

... but this does not further describe generic behaviour of the proteins involved either

So far...

- Valid existential statements on
 - instances of molecules
 - instances of amounts of molecules
 - instances of events
- Valid universal statements on
 - subtypes of events
- Invalid universal statements on
 - molecules
 - amounts of molecules

Are there universally true properties of molecules or amounts of molecules regarding interaction?

Dispositional Reading

- Authors of "Lmo-2 interacts with Elf-2" possibly do not want to refer to accidental occurrences
- They may want to express a disposition (the capability of an entity of doing sth.) "Lmo-2 molecules have the disposition to interact with Elf-2 molecules"

Ambiguities dispositional readings

- Which event is it exactly that the property in question is meant to cause?
 A: Single events / Collective events
- 2. What is thought to be the bearer of this property
 - A: Single molecules / Collectives of molecules
- 3. Which kind of property is in fact intended to be ascribed? ...

Surefire dispositions (tendencies)

- Dispositions to react invariably in a certain way under specific circumstances
- Problem: Which are the circumstances for the realization of a disposition?
 - Under "all" circumstances: already discarded
 - Under "some" circumstances: considering extreme circumstances, (nearly) any interaction is possible
 - How to define "normal circumstances"?
 (range of normality wrt concentration, pressure, temperature, pH etc.)

Probabilistic Dispositions (propensities)

- Dispositions which get realized with a certain probability under given circumstances
- Two patterns
 - Real stochastic behavior, e.g. low concentrations of one reagent
 - Hidden distinguishing characteristics, e.g. different subtypes of molecules: wildtype interacts, mutant does not

All single Lmo-2 molecules have the disposition to react with some single Elf-2 molecule

- 1. All single Lmo-2 molecules have the disposition to react with some single Elf-2 molecule
- 2. All amounts of Lmo-2 have the disposition to react with some amount of Elf-2

- All single Lmo-2 molecules have the disposition to react with some single Elf-2 molecule
- 2. All amounts of Lmo-2 have the disposition to react with some amount of Elf-2
- All single Lmo-2 molecules have the disposition to react with some amount of Elf-2 molecules

- All single Lmo-2 molecules have the disposition to react with some single Elf-2 molecule
- All amounts of Lmo-2 have the disposition to react with some amount of Elf-2
- 3. All single Lmo-2 molecules have the disposition to react with some amount of Elf-2 molecules
- 4. All amounts of Lmo-2 have the disposition to react with some single Elf-2 molecule

Finally...

- Valid existential statements on
 - instances of molecules
 - instances of amounts of molecules
 - instances of events
- Valid universal statements on
 - subtypes of events
- Valid universal statements about dispositions of
 - molecules
 - amounts of molecules

Ontology in Practice

Biologists' Nightmare?

Simplifying matters and maintaining ontological correctness

Referents of Protein names

- "Lmo-2" may refer to
 - One single Lmo-2 molecule
 - Some amount of Lmo-2 molecules,
 e.g. in an experiment
 - The collection of all Lmo-2 molecules in the world
 - The mental representation of "Lmo-2"
 - The universal (type) "Lmo-2"

Referents of Protein names

Proposal:

"Lmo-2" refers to

- The universal (type) Lmo-2 molecule
 Or
- An undefined number (n>0) of instances of Lmo-2

Referents of Interaction Assertions

- Proposal:
 - "Interacts" refers to
 - A plurality of interaction events
- Reason: Unique interaction events cannot be detected and are irrelevant

Introducing Dispositions

Disposition taxonomies:

Disposition

Disposition to Interact

Disposition to Interact with Elf-2

Conclusion:

- "Lmo-2 interacts with Elf-2" has the following two readings:
- There are a plurality of interaction events each of them has one or many Lmo-2 molecules and one or many Elf-2 molecules as participants
- Every single Lmo-2 molecule or plurality thereof has the disposition to interact with one or many Elf-2 molecules

Thank You!

International Workshop - November 8, 2006 in Baltimore, MD, USA

"Biomedical Ontology in Action"

"Lmo-2 interacts with Elf-2" On the Meaning of Common Statements in Biomedical Literature

Stefan Schulz

Department of Medical Informatics, Freiburg University Hospital, Germany

Ludger Jansen

Department of Philosophy, University of Rostock, Germany

Occurrents involving collectives (pluralities) of continuants

Existence of a
 plurality of Lmo-2 molecules
 and another instance of
 Elf-2 molecules, both
 involved in one
 interaction event

Occurrents involving collectives of continuants

Dispositional Readings

 Existence of at least one interaction event involving one instance of Lmo-2 and one instance of Elf-2

Occurrents involving collectives (pluralities) of continuants

Existence of a
 plurality of interaction
 events each of the
 involving exactly one
 Lmo-2 molecule and
 one Elf-2 molecule

Occurrents involving collectives of continuants

```
\exists p, i_1, i_2, ... i_n, n > 1:
     \bigwedge (inst(i_{\nu}, I) \wedge has\text{-}grain(p, i_{\nu}) \wedge
    \nu = 1
      \exists l_{\nu}, e_{\nu} : inst(l_{\nu}, Lmo-2) \wedge inst(e_{\nu}, Elf-2) \wedge 
        has\text{-}participant(i_{\nu}, l_{\nu}) \wedge
        has\text{-}participant(i_{\nu},e_{\nu}) \wedge
     \forall x: (has\text{-}participant(i_{\nu}, x) \rightarrow
        inst(x, Lmo-2) \lor inst(x, Elf-2)) \land
     \forall l_{\nu}^*, e_{\nu}^* : ((inst(l_{\nu}^*, Lmo-2) \land
        inst(e_{\nu}^*, Elf-2) \wedge has-participant(i_{\nu}, l_{\nu}^*) \wedge
        has\text{-}participant(i_{\nu}, e_{\nu}^*)) \rightarrow (e_{\nu}^* = e_{\nu} \wedge l_{\nu}^* = l_{\nu})))
```

```
Is-a(Lmo-2, ProteinMolecule) \land Is-a(Elf-2, ProteinMolecule) \land Is-a(ProteinMolecule, Molecule) \land Is-a(Molecule, Continuant) \land \exists l, e: inst(l, Lmo-2) \land inst(e, Elf-2)
\exists l, e: inst(l, Lmo-2) \land
```

 $inst(e, Elf-2) \wedge interacts(l, e)$

```
\exists l, e : inst(l, Lmo-2) \land inst(e, Elf-2) \land
    interacts(l, e) \land
    \forall l^*, e^* : (inst(l^*, Lmo-2) \land inst(e^*, Elf-2) \land 
       interacts(l^*, e^*)) \rightarrow (l^* = l \land e^* = e)
\exists l, e, i : inst(l, Lmo-2) \land inst(e, Elf-2) \land
      inst(i, Interaction) \land
      has-participant(i, l) \land has-participant(i, e)
 \exists l, e, i : inst(l, Lmo-2) \land inst(e, Elf-2) \land
    inst(i, Interaction) \land
    has\text{-}participant(i, l) \land has\text{-}participant(i, e) \land
    \forall x: (has\text{-}participant(i, x) \rightarrow
       inst(x, Lmo-2) \lor inst(x, Elf-2))
```

```
 \exists l, e, i : inst(l, Lmo-2) \land inst(e, Elf-2) \land \\ inst(i, Interaction) \land \\ has-participant(i, l) \land has-participant(i, e) \land \\ \forall x : (has-participant(i, x) \rightarrow \\ inst(x, Lmo-2) \lor inst(x, Elf-2)) \land \\ \forall l^*, e^* : (inst(l^*, Lmo-2) \land inst(e^*, Elf-2) \land \\ has-participant(i, l^*) \land has-participant(i, e^*)) \\ \rightarrow (e^* = e \land l^* = l))
```

Occurrents involving collectives of continuants

```
\forall c: inst(c, X_{COLL}) \rightarrow \exists e_1, e_2, ..., e_n, n > 1:
\bigwedge_{\nu=1}^{n} inst(e_{\nu}, X) \wedge has\text{-}grain(c, e_{\nu})
\exists l, e, i: inst(l, Lmo\text{-}2_{COLL}) \wedge
inst(e, Elf\text{-}2_{COLL}) \wedge inst(i, Interaction) \wedge
has\text{-}participant(i, l) \wedge has\text{-}participant(i, e)
```

Occurrents involving collectives of continuants

```
\exists p, i_1, i_2, ... i_n, n > 1:
     \bigwedge (inst(i_{\nu}, I) \wedge has\text{-}grain(p, i_{\nu}) \wedge
    \nu = 1
      \exists l_{\nu}, e_{\nu} : inst(l_{\nu}, Lmo-2) \wedge inst(e_{\nu}, Elf-2) \wedge 
        has\text{-}participant(i_{\nu}, l_{\nu}) \wedge
        has\text{-}participant(i_{\nu},e_{\nu}) \wedge
     \forall x: (has\text{-}participant(i_{\nu}, x) \rightarrow
        inst(x, Lmo-2) \lor inst(x, Elf-2)) \land
     \forall l_{\nu}^*, e_{\nu}^* : ((inst(l_{\nu}^*, Lmo-2) \land
        inst(e_{\nu}^*, Elf-2) \wedge has-participant(i_{\nu}, l_{\nu}^*) \wedge
        has\text{-}participant(i_{\nu}, e_{\nu}^*)) \rightarrow (e_{\nu}^* = e_{\nu} \wedge l_{\nu}^* = l_{\nu})))
```