

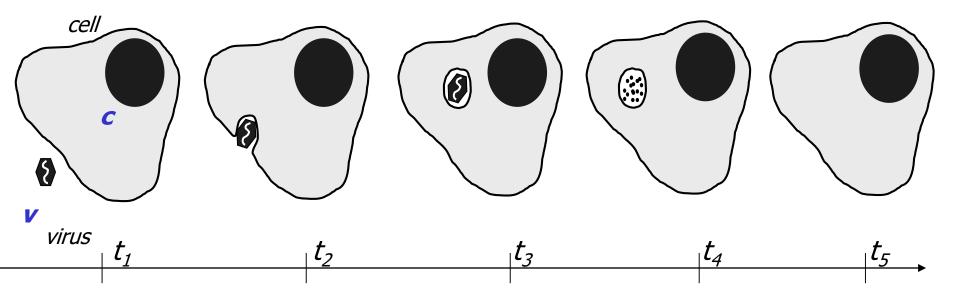
How to Distinguish Parthood from Location in Bio-Ontologies

Stefan Schulz^{a,b}, Philipp Daumke^a, Barry Smith^{c,d}, Udo Hahn^e

 ^aDepartment of Medical Informatics, Freiburg University Hospital, Germany
 ^bHealth Informatics Laboratory, Paraná Catholic University, Brazil
 ^cDepartment of Philosophy, The New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, NY, USA.
 ^dIFOMIS, Saarland University, Germany
 ^eJena University Language and Information Engineering (JULIE) Lab, Germany

Ontologies of Biological Structure ("Anatomies")

- Foundational Model of Anatomy (FMA)
- Human Anatomy portions in OpenGalen, SNOMED CT, NCI ontology,...
- Cell Component branch in Gene Ontology
- Open Biological Ontologies (OBO):
 - Human development
 - Mouse (adult / embryo), Zebrafish, Drosophila,
 C. elegans,...
 - General plant, maize, cereal plant,...
 - Increasing repository of biological structure descriptions

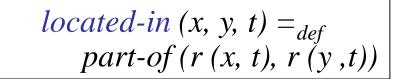

?	Example: Adult Mouse Anatomy Term Detail			
MA term: metatarsa MA id: MA:0001: Number of paths to term: 9	l bone digit 1 369		Orthogonal Part-of and	
Odenotes an 'is-a' relationship Odenotes a 'part-of' relationship mouse anatomy @ <u>adult mouse</u> @ <u>anatomic region</u> O <u>limb</u>			<i>Is-a</i> hierarchies are backbones of bio- ontologies	
O <u>hindlimb</u> O <u>foot</u> O <u>foo</u>	D <u>metatarsal bone</u> <u>Ometatarsal bone digit 1 [MA:0001]</u> <u>Ometatarsal bone digit 2</u> <u>Ometatarsal bone digit 3</u> <u>Ometatarsal bone digit 4</u> <u>Ometatarsal bone digit 5</u>	igit 2 igit 3	Part-of and Is-a are generally considered "foundational relations"	
mouse anatomy @ <u>adult mouse</u> @ <u>anatomic region</u> @ <u>limb</u> @ <u>hindlimb</u> @ <u>foot</u> @ <u>me</u>			Recent standardization of the semantics of <i>Is-a</i> and <i>Part-of</i> as asserted between classes	
	® <u>metatarsal bone</u> O <u>metatarsal bone d</u> O <u>metatarsal bone d</u> O <u>metatarsal bone d</u>		Smith et al.: Relations in Biomedical Ontologies. Genome Biology, 2005, 6 (5)	

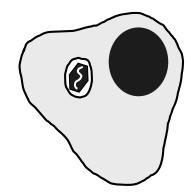
Is *part-of* a Foundational Relation ?

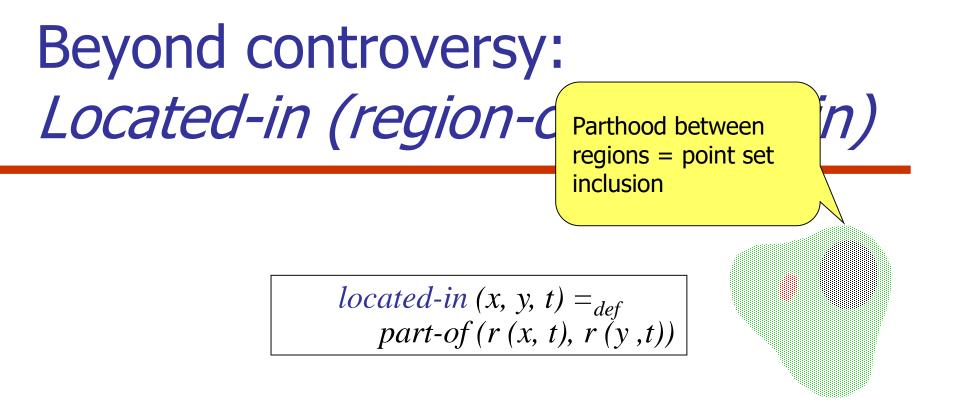
- Foundational relations are supposed to be robust with regard to individual interpretations.
- Observation: many assertions of parthood are tied to human perception and belief

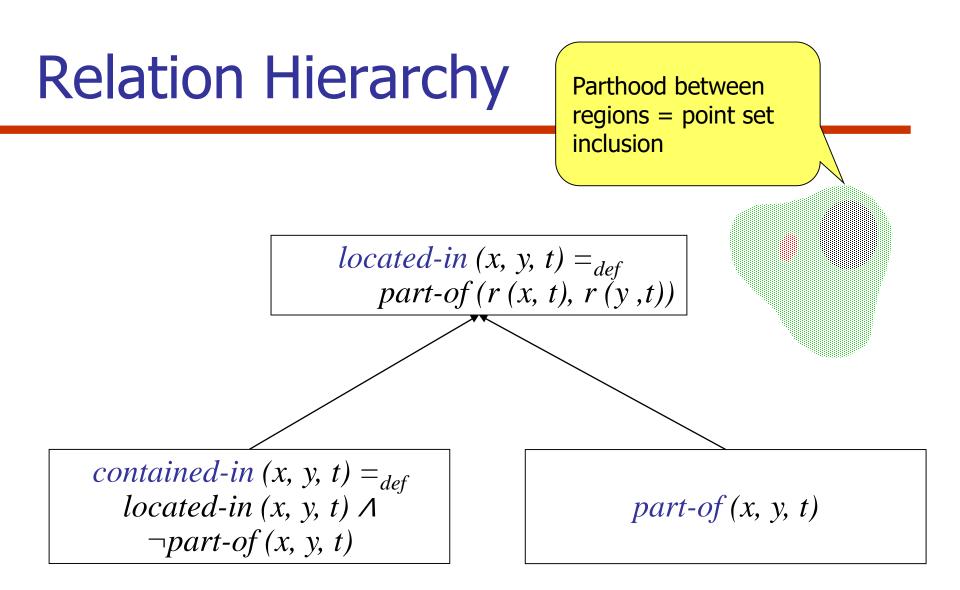
Is *part-of* a Foundational Relation ?

- Foundational relations are supposed to be robust with regard to individual interpretations.
- Many assertions of parthood are tied to human perception and belief

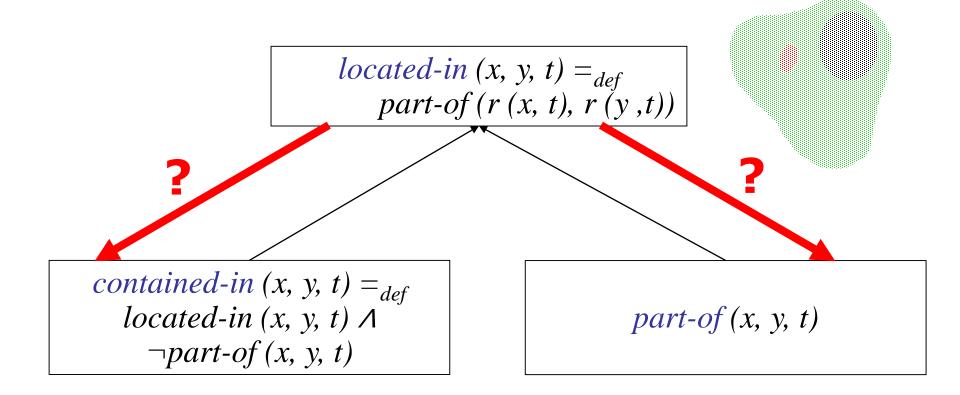



Parthood assertions are controversial


Instances of ...


Part ?	Whole	Part ?	Whole
Transplant	Organism	Thyroxin Molecule	Thyroid Gland
Mitochondrium	Cell	Alanin Molecule	Collagen Fiber
E.Coli bacterium	Intestine	Bolus of Food	Stomach
H ₂ 0 molecule	Cytoplasm	Transfused Blood	Body
Glioblastoma	Brain	Zygote	Uterus
Brain metastasis	Brain	Artificial Head	Femur

Beyond controversy: Located-in (region-contained-in)



Problem Statement

- Parthood always implies spatial location, but spatial location does not always imply parthood
- Under which circumstances can we infer parthood from spatial location ? When does inclusion without parthood obtain ?

Relation Hierarchy

Proposal: Four criteria for inferring parthood

- 1. Sortality
- 2. Genetic identity
- 3. Life Cycle
- 4. Function / Integrity

Inferring part from spatial inclusion: 1. Sortality

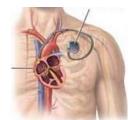
Rules out objects of certain sort as parts:

x is material, y is immaterial:

Solid $(x) \land Hole \rightarrow (y) \land located-in (x, y) \rightarrow \neg part-of (x, y)$ located-in (myBrain, myCranialCavity) \rightarrow

¬ part-of (myBrain, myCranialCavity)

x is an non-biological artifact:


 $located-in (myPacemaker, myBody) \rightarrow$

¬ part-of (myPacemaker, myBody)

 $located-in (myInlay, myTooth) \rightarrow$

¬ part-of (myInlay, myTooth)

Inferring part from spatial inclusion: 2. Genetic Identity

Rules out objects of different genetic origin: Symbionts:

 $\begin{array}{l} located-in \ (an Ecoli Bacterium \ , \ my Intestine) \rightarrow \\ \neg \ part-of \ (an Ecoli Bacterium \ , \ my Intestine) \end{array}$

Parasites:

 $\begin{array}{l} \textit{located-in (an Echinococcus, myLiver)} \rightarrow \\ \neg \textit{part-of (an Echinococcus, myLiver)} \end{array}$

Preys:

located-in (an Elephant, a Snake) \rightarrow

¬part-of (anElephant, aSnake

Zygotes, Embryos, Fetuses:

located-in (Leonardo, Caterina) \rightarrow $\neg p$ (Leonardo, Caterina)

Inferring part from spatial inclusion: 3. Life Cycle

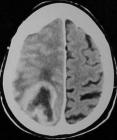
3. Life Cycle patterns which allow to assert

 parthood:
 Iocated-in

 holds for any
 instant of

 simultaneous
 existence

 aCytoplasm, aCell
 Iocated-in


NOW

t₁

 t_2

tz

aGlioblastoma, aBrain

Inferring part from spatial inclusion: 3. Life Cycle

parthood:

 t_2

t₁

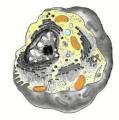
3. Life Cycle patterns which allow to rule out

located-in does

not hold at

some instant

of


simultaneous

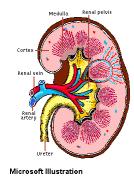
existence

 t_3

NOW

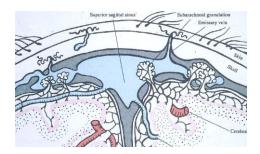
aWaterMolecule, aCell

aBrainMetastasis, aBrain



Inferring part from spatial inclusion: 4. Function / Integrity

4. Related to function or integrity

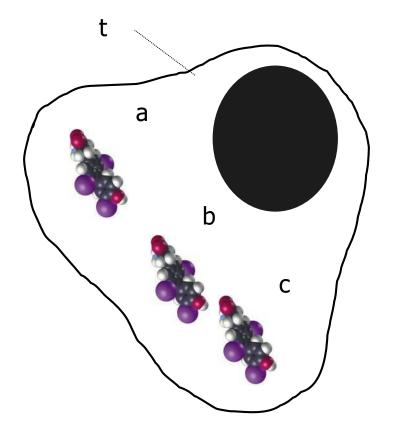

Transplants

functionally_related (aTransplant, anOrganism) ∧ located-in (aTransplant, anOrganism) → part-of (aTransplant, anOrganism)

Body Substances:

functionally_related (myCSF, myCNS) \land located-in (myCSF, myCNS) \rightarrow part-of (myCSF, myCNS)

... but not: part-of (thisVolumeOfUrine, myBladder), because not essential for function


Inferring part from spatial inclusion: Decision algorithm

If located-in (c, d, t) If Artifact(c) then **contained-in**(c, d, t) Else 4 If function-integrity-relevant (c, d, t) then part-of (c, d, t) Else 4 If not same-genetic-origin (c, d, t) or (instance-of (c, Material) and **instance-of** (*d*, *Immaterial*)) then **contained-in** (c, d, t) Else If hitherto-located-in (c, d, t) or 3 (hitherto-located-in (c, m, t) and **part-of** (m, d, t) then **part-of** (c, d, t)Else **contained-in** (c, d, t) End If End If End If End If End If

Borderline cases

- Fuzzy notion of "artifact": engineered tissue, genetically modified cells
- Unclear identity: e.g., tumors, metastases (where does their existence begin ?)
- "Sameness" of masses defined by their containers (air in the lung, blood in the heart, urine in the bladder)

Counter-intuitive consequences

- a: Thyroxine molecule synthesized by c
 -> part-of (a, t)
- b: Thyroxine molecule synthesized by other cell ->

contained-in (*b*, *t*)

 c: Thyroxine molecule ingested as drug

contained-in (c, t)

->

Acknowledgement: Anand Kumar

Conclusion

- Spatial location (topological) inclusion: noncontroversial foundational relation for bioontologies
- *part-of* more useful exhibits human-dependent semantic bias
- Algorithmic approach for specializing location to either parthood or containment
- Problems persist: borderline cases, unintuitive cases, ill-defined notion of functionality / integrity

How to Distinguish Parthood from Location in Bio-Ontologies

Stefan Schulz^{a,b}, Philipp Daumke^a, Barry Smith^{c,d}, Udo Hahn^e

 ^aDepartment of Medical Informatics, Freiburg University Hospital, Germany
 ^bHealth Informatics Laboratory, Paraná Catholic University, Brazil
 ^cDepartment of Philosophy, The New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, NY, USA.
 ^dIFOMIS, Saarland University, Germany
 ^eJena University Language and Information Engineering (JULIE) Lab, Germany