Criteria for distinguishing parthood from spatial inclusion in biological objects

Stefan Schulz, Philipp Daumke

Department of Medical Informatics University Hospital Freiburg (Germany)

Beyond Part-Of

- Part-of / has-part: Generally accepted foundational relation to describe the spatial composition of biological organisms
- Can the generic part-of be clearly distinguished from other relations by non-discretionary criteria?
- Is the part-of relation suitable for an ontology of biological systems?

Phagocytosis / Digestion

Secretion

Parthood and Spatial Inclusion

```
part-of: p(x, y, t) generic parthood relation between objects Region: z = r(x, t) z is a region in (Euklidean) space z = r(x, t) z is the region where x is located at t p(x, y, t) \rightarrow p(r(x, t), r(y, t)) (Donnelly, IJCAI 03)

Spatial inclusion (coverage, (partly) location.
```

Spatial inclusion (coverage, (partly) location,...) si spatially included by: $si(x, y, t) =_{def} p(r(x, t), r(y, t))$

When does inclusion imply parthood?

■ Under which circumstances ϕ can we infer parthood from spatial inclusion ?

$$Si(x, y, t) \wedge \phi \rightarrow p(x, y, t)$$

- Sortal constraints
- Life cycle
- Ontological Dependence
- Function

1. Sortal Constraints

■ x and y are regions: +

x is material, y is immaterial:

Solid
$$(x) \land Hole \rightarrow (y) \land si(x, y) \rightarrow \neg p(x, y)$$

si (myBrain, myCranialCavity) → ¬ p (myBrain, myCranialCavity)

x is an non-biological artifact: —

si (myPacemaker, myBody) → ¬ p (myPacemaker, myBody)

- si (myInlay, myTooth) $\rightarrow \neg p$ (myInlay, myTooth)
- si (aBullet, myArm) $\rightarrow \neg$ p (aBullet, myArm)

1. Sortal Constraints

- Alien organisms (and what they spatially include)
 - Symbionts:
 - si (anEcoliBacterium , myIntestine) $\rightarrow \neg$ p (anEcoliBacterium , myIntestine)

- Parasites:
- \blacksquare si (anEchinococcus, myLiver) $\rightarrow \neg$ p (anEchinococcus, myLiver)
- Preys:
- si (anElephant, aSnake) → ¬ p (anElephant, aSnake)
- Embryos, Fetuses: —
- si (Leonardo, Caterina) → ¬ p (Leonardo, Caterina)

Sortal Constraints Borderline cases (I)

- Grafts, transplants, transfusions
 - autologous:
 - si (mySaphenousVein, myHeart) → p (mySaphenousVein, myHeart)
 - homologous:
 - si (thisTransfusedRBC, myBlood) $\stackrel{>}{\rightarrow} \neg p$ (thisTransfusedRBC, myBlood)
 - heterologous:
 - si (thisPigValve, myHeart) → p (thisPigValve, myHeart)

1. Sortal Constraints Borderline cases (II)

- Masses and Collections
 - Body Fluids (constant exchange but few discharge)
 - ... as a whole (endure over time)
 - $si (myCSF, myCNS) \rightarrow p (myCSF, myCNS)$

- *si* (thisAmountOfCSF, myFourthVentricle) $\rightarrow \neg p$ (thisAmountOfCSF, myFourthVentricle)
- Body Secretions (periodic discharge):
- si (thisAmountOfUrine, myBladder) $\rightarrow \neg p$ (thisAmountOfUrine, myBladder)
- Other cases:
- si (myLung, thisVolumeOfAir)
- si (thisCOllectionOfLeukozytes, myGastricMucosa)

Which patterns allow the inference from inclusion to part?

2. Life Cycle: Case study

si (anAlaninMolecule, anAnimalBody)

Ingested contained as ingredient of vegetal fibers, excreted by feces without digestion

Ingested contained as ingredient of a bone, digested and used for albumin synthesis. Albumin excreted by urine

Ingested, metabolized and used for collagen synthesis. Integrated in the structure of a bone

Synthesized in the liver, built in a hemoglobin molecule, leaves body by bleeding

Synthesized in the liver, built into a globulin molecule, then catabolized in a cell

Included in the zygote and the early embryo. Then catabolized in the maternal organism

3. Ontological Dependency

- Individual level
 - x can only exist when y exists:
 - Boundaries, non-detachable objects:
 - si (myLiverSurface , myLiver) → p (myLiverSurface , myLiver)
 - si (mySkull, MyHead) → p (myLiverSurface , myLiver)
 - Identity-bearing Objects
 - si (myBrain, MyHead) → p (myBrain , myHead)

x can only exist if an instance of the class Y exists

■ $\forall x: is-a (x, Cell) \rightarrow \exists y: is-a (y, H_2O) \land si^1(x, y)$ Does not allow the inference from inclusion to part!

4. Function

- Preliminary sketch:
- If x is missing, then a function of y cannot be realized:
 Example:

If a kidney is missing, then the filtration function of the body cannot be realized.

Hence, a transplanted kidney, which has this function, can be considered *part-of* the receptor organism.

Microsoft Illustration

Conclusion

- Parthood implies Spatial inclusion
- What differentiates Parthood in biological organisms ?
- Workflow of analyses needed:
 - Check sortal constraints
 - 2. Analyze life cycle
 - 3. Analyse ontological dependency
 - 4. Analyse function (?)
- Unclear cases remain!
- Implication for biological ontologies:
 - Use Spatial inclusion as primitive instead of Parthood
 - Automatic Refinement to Parthood where the above workflow yields unambiguous results

Anatomical boundaries and immaterial objects

Stefan Schulz

Department of Medical Informatics University Hospital Freiburg (Germany)

Is the fly inside or outside her body?

Problem (I)

- Biological objects need clearly defined boundaries to enable assertions parthood and location
- Most Biological objects are sponge-like
 (full of vessels, capillaries, cavities, holes
 and other hollow spaces)

Problem (II)

- Many cavities communicate with the exterior space (e.g. respiratory system)
- Common conceptualization (cf. biomedical terminologies): biological objects have immaterial parts, eg. Lumen of esophagus, alveolar lumen, many cavities and holes in bones, ...

How to deal with hollow spaces?

H is part of E, hence B is located outside of S

H is part of S, hence B is located inside of S

Problem

- Inside or outside ?
- Example: Bronchi A foreign body in a bronchus is in the lung
- Strict topological view conflicts with shared conceptualization

Where to delimit?

1. All hollow spaces are part of the exterior...

... but nothing can be located inside...

2. Those hollow spaces which communicate with the exterior are part of the exterior space...

... what if some spaces only temporarily communicate?

4. The complete convex hull is part of the object...

... then the body would practically spatially coincide with the vascular system!

3. Only those hollow spaces which are containers something are part of the exterior space...

... how to ascertain whether they are containers?

Solution

... how to ascertain whether they are containers?

Algebraic Properties: *Part-Of | Has-Part vs. part-of | has-part*

Instance level :

```
part-of (a, b), part-of (b, c) \rightarrow part-of (a, c)
part-of (a, b) \rightarrow \neg part-of (b, a)
part-of (a, b) \rightarrow a \neq b
part-of (a, b) \rightarrow has-part (b, a)
```

Transitivity ?
Asymmetry
Irreflexivity ?
Inverse Relation

Class level*:

```
Part-For (A, B), Part-For (B, C) → Part-For (A, C)

Part-For (A, B) → ¬Part-For (B, A)

Part-For (A, B) → ¬Is-A (A, B)

Part-For (B, A) does not necessarily imply Has-Part (A, B)

Possible-Part (B, A) implies Has-Possible-Part (A, B)

(...)
```

Part-Of in Anatomies: Consensus required about

- Domain and range of part-of relations
- Algebraic properties of part-of relations
- Intended meaning of part-of relations in the domain of biology and medicine

instance level

Different notions of part-of

- Time-independent:
 - Compositional
 - Functional
 - Topological
- Time-dependent:
 - a part-of b at any point of time \rightarrow a part-of b at every point of time
 - a part-of b at one point of time, a NOT part-of b at another point of time

instance level

Different notions of part-of

- Time-independent:
 - Compositional
 - Functional
 - Topological
- Time-dependent:
 - a part-of b at any point of time \rightarrow a part-of b at every point of time
 - a part-of b at one point of time, a NOT part-of b at another point of time

Parts as Components

Parts "build" the whole

```
part-of (Finger, Hand)

part-of (Bone Marrow, Bone)

part-of (Sodium Ion, Cytoplasm)?

part-of (Sarcomer, Muscle)

part-of (Heart, Human Body)
```


"Intuitive" notion of part. Controversial

instance level

Different notions of part-of

- Time-independent:
 - Compositional
 - Functional
 - Topological
- Time-dependent:
 - a part-of b at any point of time \rightarrow a part-of b at every point of time
 - a part-of b at one point of time, a NOT part-of b at another point of time

Parts as Functional Components

Part contributes to the function of the whole

```
part-of (Finger, Hand)
part-of (Lymph Node, Lymphatic System)
part-of (Cell Nucleus, Cell)
part-of (Tendon, Muscle)
part-of (Tooth, Jaw)
```


More restricted, may conflict with notions of connection

instance level

Different notions of part-of

- Time-independent:
 - Compositional
 - Functional
 - Topological
- Time-dependent:
 - a part-of b at any point of time \rightarrow a part-of b at every point of time
 - a part-of b at one point of time, a NOT part-of b at another point of time

no clear distinction!

instance level

Different notions of part-of

- Time-independent:
 - Compositional
 - Functional
 - Topological
- Time-dependent:
 - a part-of b at any point of time \rightarrow a part-of b at every point of time
 - a part-of b at one point of time, a NOT part-of b at another point of time

Continuous exchange of matter

Endosymbiont Hypothesis

2.5 billion years ago: Primitive cell with bacterium-like symbionts Today: Chloroplasts (Plants) Mitochondria

Are the organells part of the cell

Which eggs are part of the body?

Topological parts

Located within the boundaries of an object

```
part-of (Mitochondrium, Cell)
part-of (Brain, Head)
part-of (Brain, Cranial Cavity)?
part-of (Ovum, Oviduct)?
part-of (Finger, Hand)
part-of (Amount of Blood, Right Ventricle)?
```

has-location instead of part-of?

Topological parts

Located within the boundaries of an object

has-location (Mitochondrium, Cell)

has-location (Brain, Head)

has-location (Brain, Cranial Cavity)

has-location (Ovum, Oviduct)

has-location (Finger, Hand)

has-location (amount of Blood, Right Ventricle)

has-location as a mereotopological primitive?

Topological parts

How to deal with hollow spaces?

H is part of E, hence B is located outside of S

H is part of S, hence B is located inside of S

Example

- Inside or outside ?
- Example: Bronchi A foreign body in a bronchus is in the lung
- Strict topological view conflicts with shared conceptualization

instance level

Different notions of part-of

- Time-independent:
 - Compositional
 - Functional
 - Topological
- Time-dependent:
 - a part-of b at any point of time \rightarrow a part-of b at every point of time
 - a part-of b at one point of time, a NOT part-of b at another point of time

Example: Transplantation

Example: Transplantation

Phagocytosis / Digestion

Secretion

Conclusion

- Part-of: example, how many different interpretations co-exist
- Standardization: need to eliminate ambiguity by precise characterization of foundational primitives (properties, relations)
- Solid theoretical basis is needed,
 e.g. mereotopology: Simons, Casati, Smith,
 Varzi,...