

How to Distinguish Parthood from Location in Bio-Ontologies

Stefan Schulz^{a,b}, Philipp Daumke^a, Barry Smith^{c,d}, Udo Hahn^e

^aDepartment of Medical Informatics, Freiburg University Hospital, Germany ^bHealth Informatics Laboratory, Paraná Catholic University, Brazil

^cDepartment of Philosophy, The New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, NY, USA.

^dIFOMIS, Saarland University, Germany

^eJena University Language and Information Engineering (JULIE) Lab, Germany

Ontologies of Biological Structure ("Anatomies")

- Foundational Model of Anatomy (FMA)
- Human Anatomy portions in OpenGalen, SNOMED CT, NCI ontology,...
- Cell Component branch in Gene Ontology
- Open Biological Ontologies (OBO):
 - Human development
 - Mouse (adult / embryo), Zebrafish, Drosophila,C. elegans,...
 - General plant, maize, cereal plant,...
 - Increasing repository of biological structure descriptions

Example:

Adult Mouse Anatomy

Term Detail

```
MA term: metatarsal bone digit 1
```

MA id: **MA:0001369**

Number of paths to term: 9

Odenotes an 'is-a' relationship Odenotes a 'part-of' relationship

```
mouse anatomy

Padult mouse

Panatomic region

Olimb

Ohindlimb

Pfoot

Ometatarsal bone

Ometatarsal bone digit 1 [MA:0001369]

Ometatarsal bone digit 2

Ometatarsal bone digit 3

Ometatarsal bone digit 4

Ometatarsal bone digit 5
```

```
mouse anatomy

Padult mouse

Panatomic region

Olimb

Ohindlimb

Pfoot

Pmetatarsus

Pmetatarsal bone

Ometatarsal bone digit 1 [MA:0001369]

Ometatarsal bone digit 2

Ometatarsal bone digit 3
```

- Orthogonal *Part-of* and *Is-a* hierarchies are backbones of bioontologies
- Part-of and Is-a are generally considered "foundational relations"
- Recent standardization
 of the semantics of *Is-a* and *Part-of* as asserted
 between classes

Smith et al.: Relations in Biomedical Ontologies. Genome Biology, 2005, 6 (5)

Is *part-of* a Foundational Relation?

- Foundational relations are supposed to be robust with regard to individual interpretations.
- Observation: many assertions of parthood are tied to human perception and belief

Is *part-of* a Foundational Relation?

- Foundational relations are supposed to be robust with regard to individual interpretations.
- Many assertions of parthood are tied to human perception and belief

Parthood assertions are controversial

Instances of ...

Part ?	Whole	Part ?	Whole	
Transplant	Organism	Thyroxin Molecule	Thyroid Gland	
Mitochondrium	Cell	Alanin Molecule	Collagen Fiber	
E.Coli bacterium	Intestine	Bolus of Food	Stomach	
H ₂ 0 molecule	Cytoplasm	Transfused Blood	Body	
Glioblastoma	Brain	Zygote	Uterus	
Brain metastasis	Brain	Artificial Head	Femur	

Beyond controversy: Located-in (region-contained-in)

 $\begin{aligned} located-in &(x, y, t) =_{def} \\ part-of &(r(x, t), r(y, t)) \end{aligned}$

Beyond controversy: Located-in (region-d

Parthood between regions = point set inclusion

n)

$$located-in (x, y, t) =_{def}$$

$$part-of (r (x, t), r (y, t))$$

Relation Hierarchy

Parthood between regions = point set inclusion

 $\begin{aligned} located-in & (x, y, t) =_{def} \\ part-of & (r(x, t), r(y, t)) \end{aligned}$

contained-in $(x, y, t) =_{def}$ located-in $(x, y, t) \land$ $\neg part-of(x, y, t)$

part-of(x, y, t)

Problem Statement

- Parthood always implies spatial location, but spatial location does not always imply parthood
- Under which circumstances can we infer parthood from spatial location? When does inclusion without parthood obtain?

Relation Hierarchy

Proposal: Four criteria for inferring parthood

- 1. Sortality
- 2. Genetic identity
- 3. Life Cycle
- 4. Function / Integrity

Inferring part from spatial inclusion: 1. Sortality

Rules out objects of certain sort as parts:

x is material, y is immaterial:

```
Solid (x) \land Hole \rightarrow (y) \land located-in (x, y) \rightarrow \neg part-of (x, y)
located-in (myBrain, myCranialCavity) \rightarrow \neg part-of (myBrain, myCranialCavity)
```

x is an non-biological artifact:

```
located-in (myPacemaker, myBody) \rightarrow \\ --part-of (myPacemaker, myBody)
located-in (myInlay, myTooth) \rightarrow \\ --part-of (myInlay, myTooth)
```


Inferring part from spatial inclusion: 2. Genetic Identity

Rules out objects of different genetic origin:

Symbionts:

```
located-in\ (anEcoliBacterium\ ,\ myIntestine) \rightarrow \\ \neg\ part-of\ (anEcoliBacterium\ ,\ myIntestine)
```


Parasites:

```
located-in (anEchinococcus, myLiver) →

¬ part-of (anEchinococcus, myLiver)
```


Preys:

```
located-in\ (an Elephant,\ aSnake) \rightarrow \\ \neg\ part-of\ (an Elephant,\ aSnake)
```


Zygotes, Embryos, Fetuses:

```
located-in (Leonardo, Caterina) \rightarrow \neg p (Leonardo, Caterina)
```


Inferring part from spatial inclusion: 3. Life Cycle

3. Life Cycle patterns which allow to assert

aGlycinMolecule, aCollagenFiber

Inferring part from spatial inclusion: 3. Life Cycle

3. Life Cycle patterns which allow to rule out

aWaterMolecule, aCell

aBrainMetastasis, aBrain

Inferring part from spatial inclusion: 4. Function / Integrity

4. Related to function or integrity

Transplants

```
functionally_related (aTransplant, anOrganism)

∧ located-in (aTransplant, anOrganism) →

part-of (aTransplant, anOrganism)
```


Body Substances:

```
functionally_related (myCSF, myCNS)
 \land located\text{-}in (myCSF, myCNS) \rightarrow \\ part\text{-}of (myCSF, myCNS)
```


... but not: part-of (thisVolumeOfUrine, myBladder), because not essential for function

Inferring part from spatial inclusion: Decision algorithm

```
If located-in (c, d, t)
      If Artifact(c) then
        contained-in(c, d, t)
      Else
4
        If function-integrity-relevant (c, d, t) then
          part-of (c, d, t)
        Else
          If not same-genetic-origin (c, d, t) or
                    (instance-of (c, Material) and
                    instance-of (d, Immaterial)) then
            contained-in (c, d, t)
          Else
            If hitherto-located-in (c, d, t) or
3
              (hitherto-located-in (c, m, t) and
              part-of (m, d, t)) then
                part-of (c, d, t)
            Else
                contained-in (c, d, t)
            End If
          End If
        End If
      End If
  End If
```

Borderline cases

- Fuzzy notion of "artifact": engineered tissue, genetically modified cells
- Unclear identity: e.g., tumors, metastases (where does their existence begin ?)
- "Sameness" of masses defined by their containers (air in the lung, blood in the heart, urine in the bladder)

Counter-intuitive consequences

- a: Thyroxine molecule synthesized by c
 - \rightarrow part-of (a, t)
- b: Thyroxine molecule synthesized by other cell -> contained-in (b, t)
- c: Thyroxine molecule ingested as drug

-> contained-in (c, t)

Acknowledgement: Anand Kumar

Conclusion

- Spatial location (topological) inclusion: noncontroversial foundational relation for bioontologies
- part-of more useful exhibits human-dependent semantic bias
- Algorithmic approach for specializing location to either parthood or containment
- Problems persist: borderline cases, unintuitive cases, ill-defined notion of functionality / integrity

How to Distinguish Parthood from Location in Bio-Ontologies

Stefan Schulz^{a,b}, Philipp Daumke^a, Barry Smith^{c,d}, Udo Hahn^e

^aDepartment of Medical Informatics, Freiburg University Hospital, Germany ^bHealth Informatics Laboratory, Paraná Catholic University, Brazil

^cDepartment of Philosophy, The New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, NY, USA.

^dIFOMIS, Saarland University, Germany

^eJena University Language and Information Engineering (JULIE) Lab, Germany