Ninth International Conference on Principles of Knowledge Representation and Reasoning (KR2004), June 2 - 5, 2004, Whistler (Canada)

Parthood as Spatial Inclusion Evidence from Biomedical Conceptualizations

Stefan Schulz

Department of Medical Informatics University Hospital Freiburg (Germany) Udo Hahn

Text Knowledge Engineering Lab University of Jena (Germany)

Bio-Ontologies

Occurrents:

(Changes of) states of affairs of the physical world: Examples: disease

Examples: disease process, procedure, action

depend on

Continuants:

Entities of the physical world

("Biomedical Structure"):

Examples: body, organ, tissue, molecule,...

Domain ontologies of biomedical structure

- Gene Ontology: Cellular Component branch (species independent) www.geneontology.org/
- Foundational Model of Anatomy (FMA) (canonic adult human) sig.biostr.washington.edu/projects/fm/
- Open Biological Ontologies (OBO): (drosophila, zebrafish, mouse [adult and embryonic stages]...) obo.sourceforge.net
- GALEN CORE anatomy (clinical medicine) www.opengalen.org
- SNOMED anatomy branch (human and vet medicine) www.snomed.org
- UMLS Semantic Net (upper model)
 (human and vet medicine) www.nlm.nih.gov/pubs/factsheets/umlssemn.html

Size: 14 (UMLS SN) - 10³ (Adult Mouse) - 10⁵ (FMA)

Common Denominator of different "anatomies"

- Concept Oriented (make assertions about classes of individual objects)
- Binary Relations: $Rel(C_1, C_2)$
- Two main hierarchy-building relations
 - Taxonomy: Is-A (C_1, C_2)

Common Denominator of different "anatomies"

- Concept Oriented (make assertions about classes of individual objects)
- Binary Relations: $Rel(C_1, C_2)$
- Two main hierarchy-building relations
 - Taxonomy: $Is-A(C_1, C_2)$
 - Partonomy: $Part-Of(C_1, C_2)$

Typical part-of related reasoning problem:

"Property inheritance" across mereologic hierarchies

has-location (InsulinProduction, BetaCells) part-of (BetaCells, Pancreas) has-location (InsulinProduction, Pancreas

has-location (Mitosis, EukaryoticCells) part-of (EukaryoticCells, Pancreas) has-location (Mitosis, Pancreas)

amputation-of (ToeAmputation, Toe) *part-of* (Toe, Foot)

amputation-of (ToeAmputation, Foot)

inflammation-of (Glomerulonephritis, Glomerulum)

part-of (Glomerulum, Kidney) *inflammation-of* (Nephritis, Kidney)

is-A (Glomerulonephritis, Nephritis)

inflammation-of (Appendicitis, Appendix) part-of (Appendix, Intestine) inflammation-of (Enteritis, Intestine)

is-A (Appendicitis, Enteritis)

Part-of in Biomedical structure models: Two Major Deficits

 Part-of originally relates individuals, but here it relates universals (classes of individuals, concepts)

Part-of between individuals and universals

British Columbia part-of Canada

Thumb Part-Of Hand

Part-of in Biomedical structure models: Two Major Deficits

- Part-of originally relates individuals, but here it relates universals (classes of individuals, concepts)
- Unclear Semantics: part-of has locative, functional, temporal aspects

Part-of in Biomedical structure models: Two Major Deficits

- Part-of originally relates individuals, but here it relates universals (classes of individuals, concepts)
- Unclear Semantics: part-of has locative, functional, temporal aspects

Further Specification Needed!

Class-level Part-Of: Different Interpretations

Class B (whole) Examples Class A (part) Cell Nucleus – Cell Chlorophyll – Organism One-sided Prostate Tumor – Prostate Mereological Sulfur – Methionin Dependency Wing – Chicken Heart - Drosophila Mutual Mereological Cell Membrane - Cell Vertebra - Vertebrate Dependency Body Surface – Body Uterus - Mammal Mereological Sulfur - AMino Acid Independency Tooth – Human Wing - Mouse Mereological Sulfur - Alanin Disjointness Lung - Hand

Part-Of between Classes: Different Interpretations

Definition: Part-Of | Has-Part vs. part-of | has-part (proper-part)

■ Instance level:

```
part-of (a, b), part-of (b, c) \rightarrow part-of (a, c)
part-of (a, b) \rightarrow \neg part-of (b, a)
part-of (a, b) \rightarrow a \neq b
part-of (a, b) \rightarrow has-part (b, a)
```

Class level:

```
Part-Of (A, B) = _{def}

\forall x: inst-of (x, A) \rightarrow \exists y: inst-of (y, B) \land part-of (x, y)

Has-Part (B, A) = _{def}

\forall y: inst-of (y, B) \rightarrow \exists x: inst-of (x, A) \land part-of (x, y)

Has-Part (B, A) does not necessarily imply Part-Of (A, B)
```

Part-of in Biomedical structure models: Two Major Deficits

- Part-of originally relates individuals, but here it relates universals (classes of individuals, concepts)
- Unclear Semantics: part-of has locative, functional, time-dependent aspects

Examples

Part-Of (Finger, Hand)

Part-Of (Finger, Hand)
Part-Of (Brain Metastasis, Brain)

Part-Of (Finger, Hand)
Part-Of (Brain Metastasis, Brain)
Part-Of (Meningioma, Brain)

Part-Of (Finger, Hand)

Part-Of (Brain Metastasis, Brain)

Part-Of (Meningioma, Brain)

Part-Of (Right Ventricle, Heart)

Part-Of (Finger, Hand)

Part-Of (Brain Metastasis, Brain)

Part-Of (Meningioma, Brain)

Part-Of (Right Ventricle, Heart)

Part-Of (Mitochondria, Cell)

Part-Of (Finger, Hand)

Part-Of (Brain Metastasis, Brain)

Part-Of (Meningioma, Brain)

Part-Of (Right Ventricle, Heart)

Part-Of (Mitochondria, Cell)

Part-Of (Cell Membrane, Cell)

Part-Of (Finger, Hand)

Part-Of (Brain Metastasis, Brain)

Part-Of (Meningioma, Brain)

Part-Of (Right Ventricle, Heart)

Part-Of (Mitochondria, Cell)

Part-Of (Cell Membrane, Cell)

Part-Of (Insulin, Beta Cell)

Part-Of (Finger, Hand)

Part-Of (Brain Metastasis, Brain)

Part-Of (Meningioma, Brain)

Part-Of (Right Ventricle, Heart)

Part-Of (Mitochondria, Cell)

Part-Of (Cell Membrane, Cell)

Part-Of (Insulin, Beta Cell)

Part-Of (Egg, Chicken)

Part-Of (Finger, Hand)

Part-Of (Brain Metastasis, Brain)

Part-Of (Meningioma, Brain)

Part-Of (Right Ventricle, Heart)

Part-Of (Mitochondria, Cell)

Part-Of (Cell Membrane, Cell)

Part-Of (Insulin, Beta Cell)

Part-Of (Egg, Chicken)

Part-Of (Leaf, Tree)

Phagoctosis / Digestion

Parthood or Location?

Excretion / Secretion

Parthood or Location ? Inside or Outside

Endosymbiont Hypothesis

2.5 billion years ago: Primitive cell with bacterium-like symbionts Today: Plant cell with chloroplasts

Parthood or Location?

Hollow Spaces (I)

- Inside or outside ?
- Example: Bronchi A foreign body in a bronchus is in the lung
- Topological view vs.
 Shared medical conceptualization

Hollow Spaces (II)

- Convex hull operator ?
 C would be "inside"
- Pragmatic solution: "Inside" a biological structure = located in the solid parts or in those hollow spaces which are defined included into structure (here A and B)

Proposal: generalize *part-of* to *has-location*

- Domain: solids, hollows, occurrents
- Range: solids, hollows

Examples:

Has-Location (Brain, Cranial Cavity)

Has-Location (Pharyngitis, Pharynx)

Has-Location (Finger, Hand)

Has-Location (Embryo, Uterus)

- Advantage: clear semantics, easier consensus
- Disadvantage: functional aspects hidden

Definition: Loc / Inc vs. loc / inc

Instance level:

loc = *has-location* is transitive, reflexive, antisymmetric

inc = includes is the inverse of loc

Class level:

```
Loc(A, B) = _{def}

\forall x: inst-of(x, A) \rightarrow \exists y: inst-of(y, B) \land loc(x, y)

Inc (B, A) = _{def}

\forall y: inst-of(y, B) \rightarrow \exists x: inst-of(x, A) \land inc(x, y)

Inc (B, A) does not necessarily imply Loc (A, B)
```

Class-level Loc / Inc: Different Interpretations

Class A (includee) Class B (includer) Examples Cell Nucleus – Cell Chlorophyll – Organism One-sided Prostate Tumor - Prostate Mereotopological Sulfur – Methionin Dependency Wing – Chicken Heart - Drosophila Mutual Mereotopo-Cell Membrane - Cell Vertebra – Vertebrate logical Dependency Body Surface – Body Uterus - Mammal Mereotopological Sulfur - AMino Acid Independency Tooth – Human Wing - Mouse Mereotopological Sulfur - Alanin Disjointness Lung - Hand

Reification of *inc* and *loc*

 $\forall x: inst-of(x, A_{loc}) \rightarrow \exists y: inst-of(y, A) \land loc(x, y)$

 $\forall x: inst-of(x, A_{inc}) \rightarrow \exists y: inst-of(y, A) \land inc(x, y)$

Extended Taxonomy

Conclusion

- Domain idiosyncrasies:
 - Unclear distinction between parthood and location
 - Hollow spaces are considered "part-of" their host
 - No obvious need of a distinction between an object and the region it occupies
- Use strict topological inclusion for biological domain models
- Facilitates consensus between knowledge engineers
- Facilitates "role propagation" in compositional hierarchies
- Ontological inquiry of the consequences of the fusion of parthood with location still due

Plausible inferences by taxonomic subsumtion

"Amputation of a foot is an amputation which targets a foot and is located at a foot."

```
\forall x: instance\text{-}of(x, AmputationOfFoot) \rightarrow \\ (instance\text{-}of(x, Amputation) \land instance\text{-}of(x, Foot_{loc}) \land \\ \exists y: instance\text{-}of(y, Foot) \land targets(x, y))
```

"Amputation at a foot is an amputation which is located at a foot."

```
\forall x : instance\text{-}of(x, AmputationAtFoot) \rightarrow (instance\text{-}of(x, Amputation) \land instance\text{-}of(x, Foot_{loc}))
```

■ Given Is- $A(Toe_{loc}, Foot_{loc})$, "amputation of a toe" can be classified as "amputation at a foot", but not as an "amputation of a foot"

Part-of: Locative flavor

Part-of in Biomedical structure models: Deficits

- Commitment to algebraic foundations (transitivity, reflexivity, symmetry)
- Semantics: locative, functional, timedependent
- Open or Closed World
- Part-of between Classes

Common Denominator of different "anatomies"

Concepts (classes of individuals) with

Semantic Links

Concept 1	relation	Concept 2
HEART	part_of	ORGANISM
HEART	is_a	ORGAN
HEART	has_part	HEART-ATRIUM
HEART	has_part	MYOCARDIUM
HEART	has_part	MITRAL-VALVE
MITRAL-VALVE	is_a	VALVE

Double hierarchy (taxonomic / partonomic)

Part-of in Biomedical structure models: Deficits

- Commitment to algebraic foundations (transitivity, reflexivity, symmetry)
- Semantics: locative, functional, timedependent
- Open or Closed World

 $Part-Of(A,B) =_{def}$

 $\forall x : instance\text{-}of(x, A) \rightarrow \exists y : (instance\text{-}of(y, B) \land part\text{-}of(x, y))$

 $Has\text{-}Part(A,B) =_{def}$

 $\forall x : instance\text{-}of(x, A) \rightarrow \exists y : (instance\text{-}of(y, B) \land has\text{-}part(x, y))$

 $\begin{aligned} Loc(A,B) =_{def} \\ \forall x: instance\text{-}of(x,A) \rightarrow \exists y: (instance\text{-}of(y,B) \land loc(x,y)) \\ Inc(A,B) =_{def} \\ \forall x: instance\text{-}of(x,A) \rightarrow \exists y: (instance\text{-}of(y,B) \land inc(x,y)) \end{aligned}$

 $Real\text{-}Part\text{-}Of \quad (A,B) \quad =_{def} Loc(A,B) \wedge Inc(B,A)$

 $\forall x : instance-of(x, A_{loc}) \rightarrow \exists y : (instance-of(y, A) \land loc(x, y))$

 $\forall x : instance-of(x, A_{inc}) \rightarrow \exists y : (instance-of(y, A) \land inc(x, y))$

 $\forall x : instance\text{-}of(x, Glomerulonephritis) \rightarrow (instance\text{-}of(x, Inflammation) \land instance\text{-}of(x, Glomerulum_{loc}))$

 $Is-A(Glomerulum_{loc}, Kidney_{loc})$

 $\forall x : instance\text{-}of(x, Nephritis) \rightarrow \\ (instance\text{-}of(x, Inflammation) \land instance\text{-}of(x, Kidney_{loc}))$

"Amputation of a foot is an amputation which targets a foot and is located at a foot."

$$\forall x : instance\text{-}of(x, AmputationOfFoot) \rightarrow \\ (instance\text{-}of(x, Amputation) \land instance\text{-}of(x, Foot_{loc}) \land \\ \exists y : instance\text{-}of(y, Foot) \land targets(x, y))$$

"Amputation at a foot is an amputation which is located at a foot."

$$\forall x: instance\text{-}of(x, AmputationAtFoot) \rightarrow (instance\text{-}of(x, Amputation) \land instance\text{-}of(x, Foot_{loc}))$$

 $Is-A(Toe_{loc}, Foot_{loc})$

