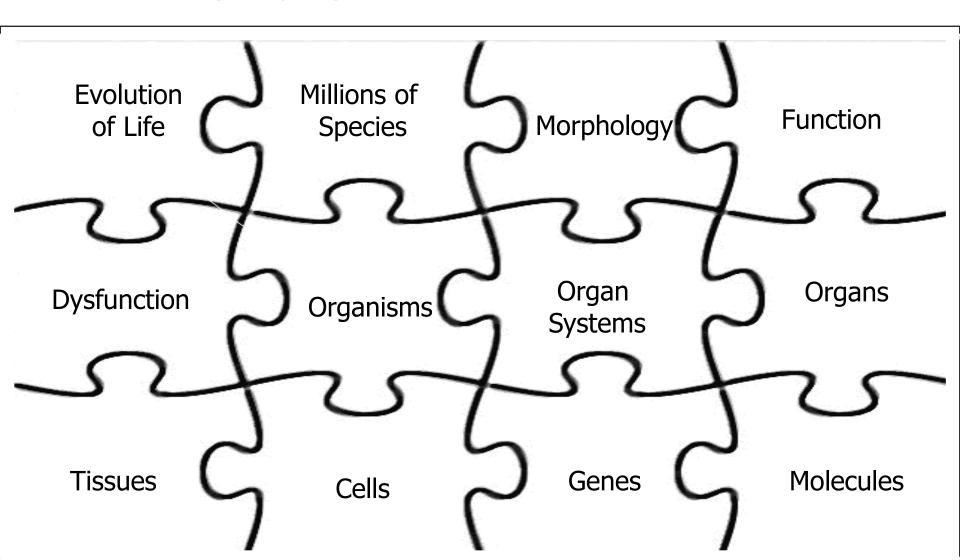
First International Workshop on Formal Biomedical Knowledge Representation (KR-MED2004), June 1, 2004, Whistler (Canada)

Towards a Computational Paradigm for Biological Structure


Stefan Schulz

Department of Medical Informatics University Hospital Freiburg (Germany)

Udo Hahn

Text Knowledge Engineering Lab University of Jena (Germany)

The World of Life Sciences...

...requires sophisticated organization

Bio-ontologies

Occurrents:

(Changes of) states of affairs of the physical world:

Examples: process, state, event,...

Continuants:

Entities of the physical world ("Biomedical Structure"):

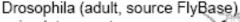
Examples: body, organ, tissue, molecule,...

What exists?

- Human Anatomy
 - Foundational Model of Anatomy (FMA)
 - Portions of SNOMED, OpenGalen, MeSH
- Other Organisms
 - Open Biological Ontologies (OBO)
 - ■Mouse (developmental stages), Zebrafish, Drosophila,...
- Species-Independent
 - Gene Ontology: Cellular Component

Overlap

Mouse (embryonal stage TS11, source: MGI)


- cardiovascular system
- - heart
- - cardiogenic plate

Mouse (embryonal stage TS18, source: MGI)

- cardiovascular system
- - heart
- - atrio-ventricular canal
- - atrium
- - bulboventricular groove
- - bulbus cordis
- - endocardial cushion tissue
- - mesentery
- - outflow tract
- - pericardium
- - primitive ventricle
- - sinus venosus

Mouse (embryonal stage TS26, source: MGI)

- cardiovascular system
- - heart
- - aortic sinus
- - atrio-ventricular canal
- - atrio-ventricular cushion tissue
- - atrium
- - bulbar cushion
- - endocardial cushion tissue
- - endocardial tissue
- - mesentery
- - pericardium
- - trabeculae carneae
- - valve
- - ventricle

- circulatory system
- - heart
- - heart muscle
- - adult aortic funnel
- - adult ostia
- - dorsal diaphragm
- - heart chamber
- - terminal opening


Zebrafish (adult, source: ZFIN)

- cardiovascular system
- - heart
- - atrium
- - bulbus arteriosus
- - hypobranchial vessels
- - sinus venosus
- - ventricle

Human, Adult, (source: FMA)

- cardiovascular system
- - heart
- - wall of heart
- - right atrium
- - left atrium
- - right ventricle
- - left ventricle
- - right side of heart
- - left side of heart
- - fibrous skeleton of heart
- - papillary muscle
- - cardiac valve
- - tricuspid valve
- - mitral valve
- - aortic valve
- - pulmonary valve
- - interatrial septum
- - (...)

is-a organ chamber

is-a cardiac valve

Same name – different meaning

"Motor Neuron instance-of Neuron" (FlyBase)

"Motor Neuron narrower Neuron" (MeSH) Neuron

Is-A?

Motor
Neuron

"Motor Neuron subclass-of Neuron" (FMA, OpenGALEN)

Same name – different meaning

"Cell has-part Axon"

(Gene Ontology)

Do cells without axons exist?

Do axons without cells exist?

■"*Neuron has-part Axon*" (FMA)

Does every neuron has an axon?

Axon (impulse generating and conducting and conducting and conducting direction Node of Ranvier (sheath of Schwann)

Neurillemma (sheath of Schwann)

Telodendria (terminal branches)

Axonal terminal

Cell body

(biosynthetic center)

Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Deficiencies (II)

"Cell has-part Axon"
(Gene Ontology)

Do cells without axons exist?

Do axons without cell exist?

"Neuron has-part Axon" (FMA)
Nissi bodi

Does every neuron has an axon?

"Keep in mind that part_of means can be a part of, not is always a part of "
GO Editorial Style Guide, Oct 2003

"The part_of relationship (...) is usually necessarily is_part"
GO Editorial Style Guide, Jan 2004

Axon (impulse generating and conducting

"A part_of B if and only if: for any instance x of A there is some instance y of B which is such that x stands to y in the instance-level part relation, and vice versa."

Rosse & Smith MEDINFO 2004

Conflicting and / or underspecified conceptualizations hamper sharing and integration of ontologies

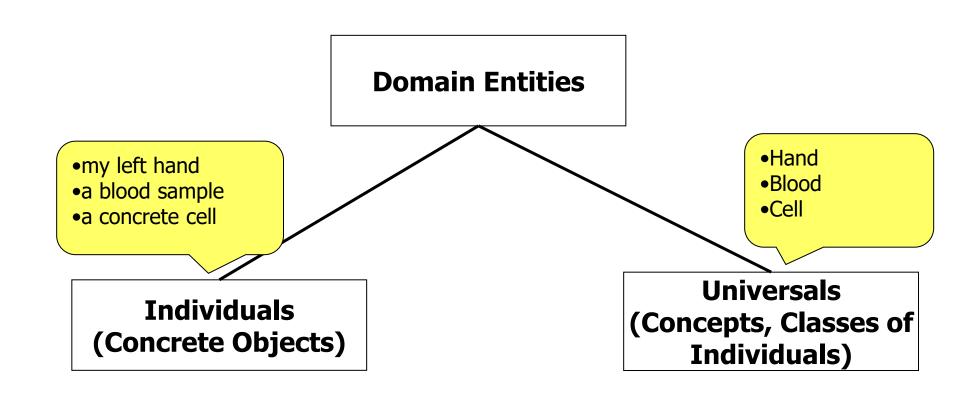
Semantic framework for biological structure...

Foundational Relations

General Attributes

Semantic framework for biological structure...

■Foundational Relations


General Attributes

Foundational Relations between Biological Structure

- is-a
- instance-of
- part-of / has-part
- has-location / location-of
- has-branch / branch-of
- has-developmental-form / is-developmental-form-of
- descends-from / has-descendant
- connects
- bounds / bounded by

classify by domain / range ?

Two kinds of entities

Classification of Foundational Relations

part-of has-location has-branch has-developmental-form bounds connects

Is-A
Descends-From

Individuals (concrete objects)

Universals (Concepts, Classes of Individuals)

instance-of

Classification of Foundational Relations

Part-Of

Has-Location

Has-Branch

Has-Developmental-Form

Bounds

Connects

Individuals (concrete objects)

Is-A

Descends-From

Universals (Concepts, Classes of Individuals)

instance-of

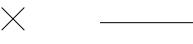
From Instance-to-Instance relations to Class-to-Class Relations

A, B are classes, inst-of = class membership rel: relation between instances Rel: relation between classes

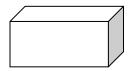
```
Rel(A, B) =_{def}
```

- $\exists x: inst-of(x, A) \land inst-of(y, B) \land rel(x, y)$ OR
- $\forall y: inst-of(y, B) \rightarrow \exists x: inst-of(x, A) \land rel(x, y)$

ct. Schulz & Hahn (KR 2004, June 2, 11am) Rosse & Smith (MEDINFO 2004)


Semantic framework for biological structure...

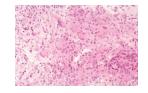
■Foundational Relations


■General Attributes

General Attributes (mutually disjoint classes)

■ Dimensionality: Point, 1-D, 2-D, 3-D

■ Solids vs. hollow spaces, vs. Boundaries



■ Collections vs. Masses vs. Count Objects

Semantic framework for biological structure...

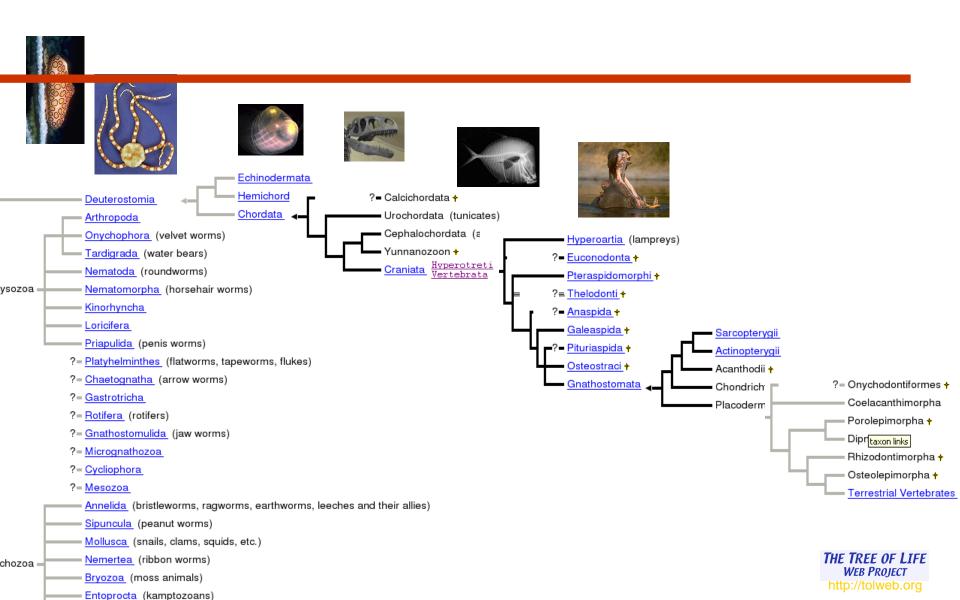
■Foundational Relations

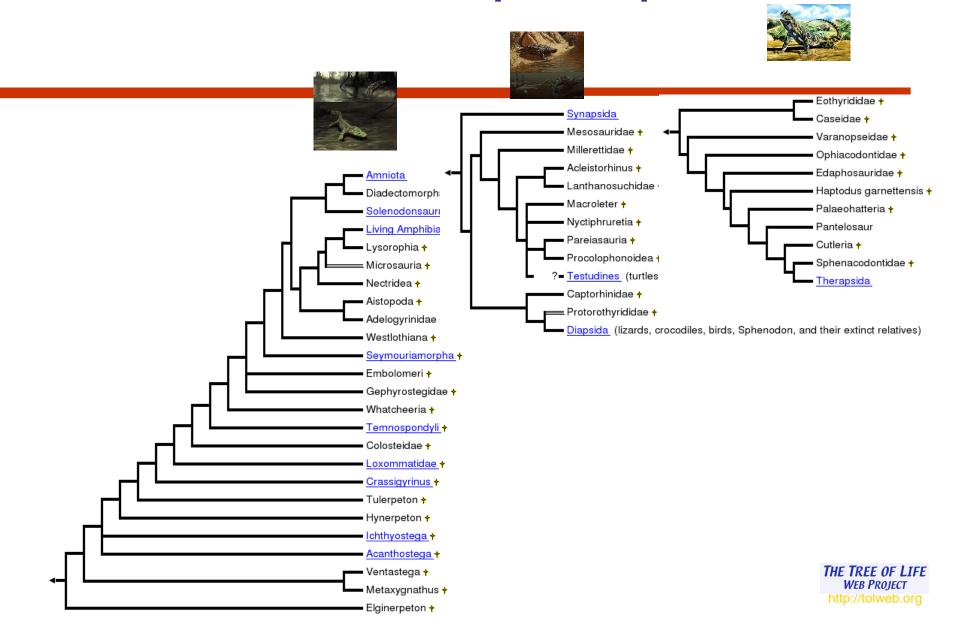
- General Attributes
- Theories

- A set of formal axioms which describe a restricted (local) domain.
- Four orthogonal theories for Biological Structure
 - Granularity
 - **■**Species
 - Development
 - **■**Canonicity

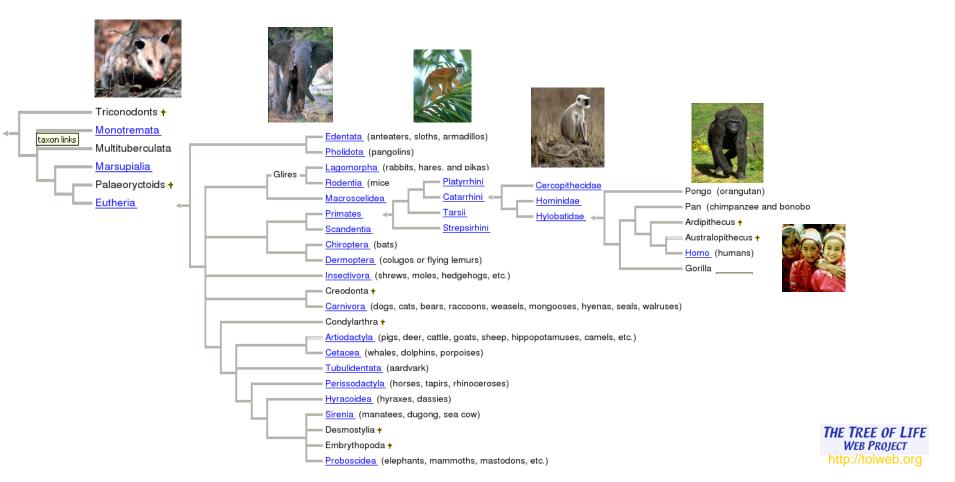
- A set of formal axioms which describe a restricted (local) domain.
- Four orthogonal theories for Biological Structure
 - Granularity
 - **■**Species
 - Development
 - **■**Canonicity

Granularity

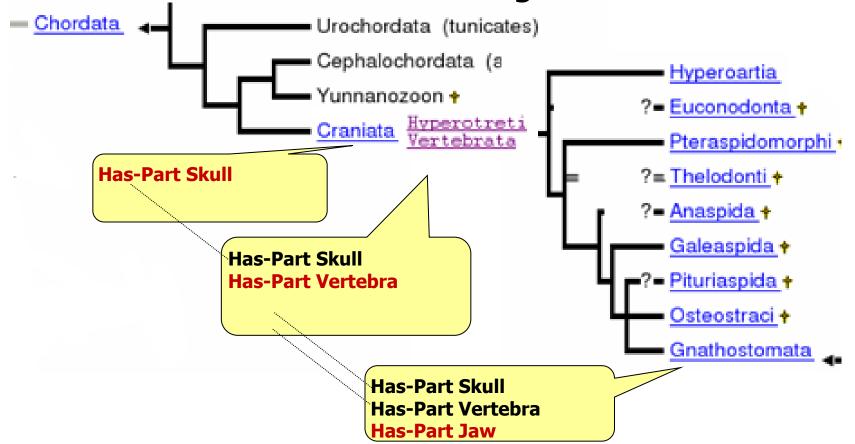

Level of detail (molecular, cellular, tissue, organ)


- Change in Granularity level may be non-monotonous
 - Change of sortal restrictions:
 - \blacksquare 3-D → 2-D boundary
 - ■Count concept → Mass concept
 - Change of relational attributions:
 - ■disconnected → connected

- A set of formal axioms which describe a restricted (local) domain.
- Four orthogonal theories for Biological Structure
 - Granularity
 - **■**Species
 - Development
 - **■**Canonicity

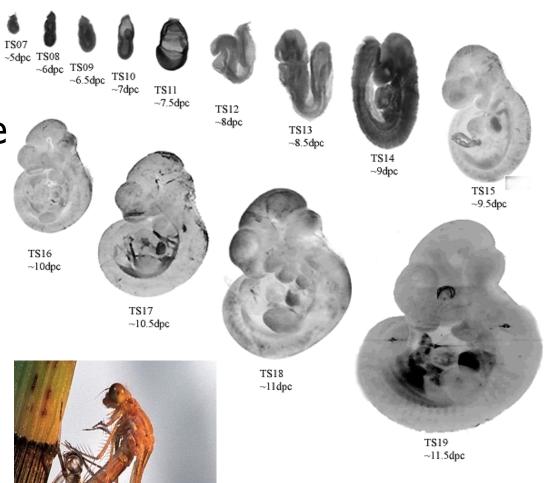

Linnean Taxonomy of Species

Linnean Taxonomy of Species



Linnean Taxonomy of Species

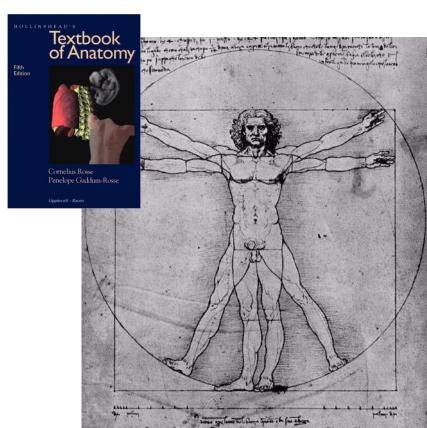
Species


Introduction of Axioms at the highest common level

- A set of formal axioms which describe a restricted (local) domain.
- Four orthogonal theories for Biological Structure
 - Granularity
 - **■**Species
 - **■**Development
 - **■**Canonicity

Development

- Represents timedependent "snapshots" from the life cycle of an organism, e.g., zygote, embryo, fetus, child, adult
- Granularity stages are speciesdependent e.g. metamorphosis



- A set of formal axioms which describe a restricted (local) domain.
- Four orthogonal theories for Biological Structure
 - Granularity
 - **■**Species
 - Development
 - **■**Canonicity

Degrees of "Wellformedness" of Biological

Structure:

Canonic structure

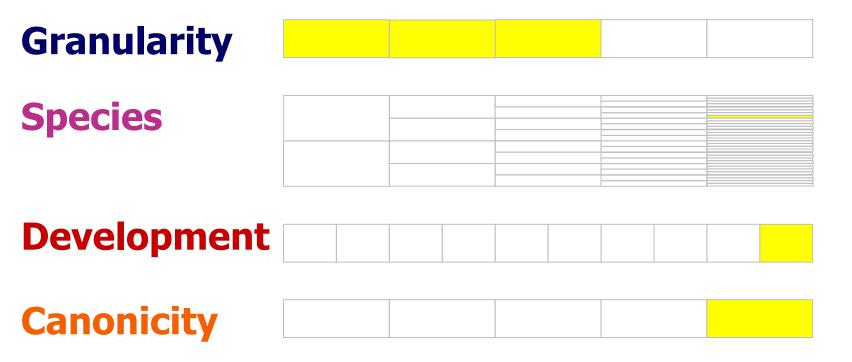
- Degrees of "Wellformedness" of Biological Structure:
 - Canonic structure
 - Structural Variations

Degrees of "Wellformedness" of Biological Structure:

- Canonic structure
- Structural Variations
- Pathological Structure

- Degrees of "Wellformedness" of Biological Structure:
 - Canonic structure
 - Structural Variations
 - Pathological Structure
 - Lethal Structure

- Degrees of "Wellformedness" of Biological Structure:
 - Canonic structure
 - Structural Variations
 - Pathological Structure
 - Lethal Structure
 - Derivates of biological structure

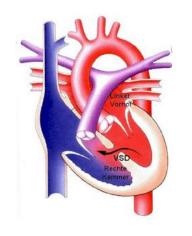

Five canonicity levels: each level introduces axioms valid for higher levels

Level	1	2	3	4	5
Theory	any amount	any living	any living	living organism	ideal
	of matter, if of	or dead	organism	without pathologic	organism
	biological origin	organism		modifications	
Set of	n_1	n_2	n_3	n_4	n_5
Axioms		$n_1 \subset n_2$	$n_2 \subset n_3$	$n_3 \subset n_4$	$n_4 \subset n_5$

Examples

Granularity			
•	I	I	
Species			
Development			
			<u> </u>
Canonicity			

Coverage: Foundational Model of Anatomy


Coverage: Gene Ontology

Granularity			
Species			
Development			
Canonicity			

Coverage: Mouse Anatomy

Granularity
Species
Development
Canonicity

Examples

Connects(RightVentricle, Left Ventricle)

Granularity	= normal	
Species	= mammal	f-l
Development	= adult	false
Canonicity	= 4-5	

true

false

Granularity = any

= vertebrate **Species** = early embryo

Development

Canonicity = any

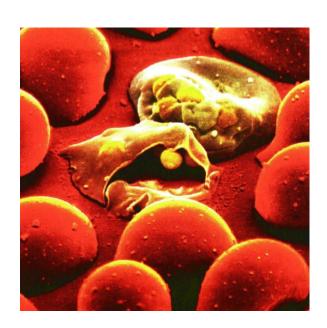
Development

Canonicity

Is-A(Membrane, 3-D object)

= any

= any


Conclusion

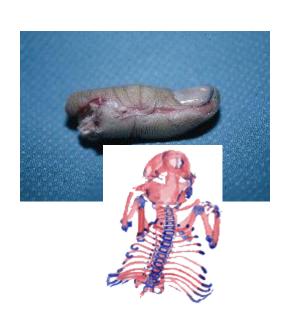
- Integration of bio-ontologies requires
 - Uncontroversial semantics of relations and attributes
 - Clear commitment to theories, such as granularity, species, development and canonicity
- Redundancy can be avoided
 - Encoding axioms at the highest common level in the species taxonomy (e.g. vertebrates, arthropods, primates) and benefit from inheritance in subsumption hierarchies

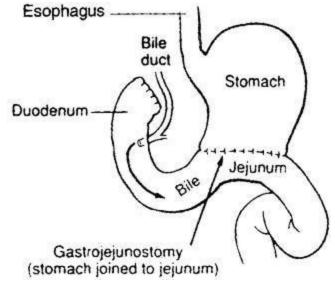
...requires sophisticated organization

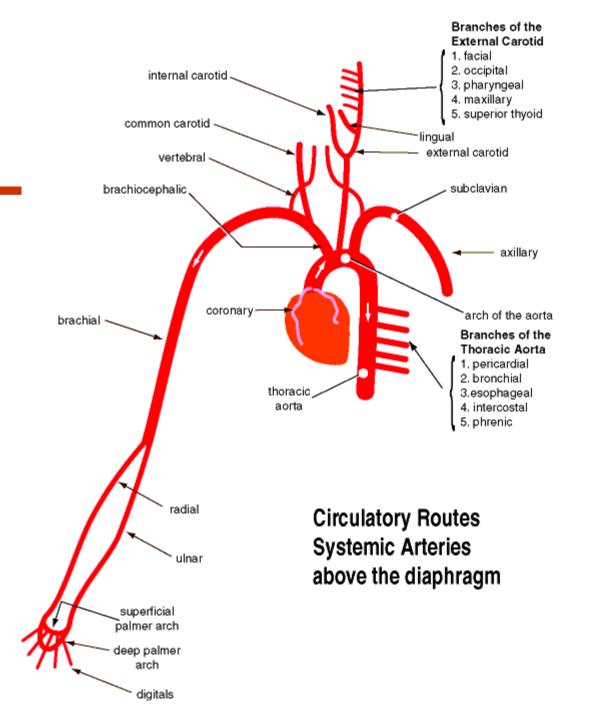
- Formalization and Standardization of Clinical Terminologies
- Basis for the Annotation of Genes and Gene Products
- Semantic reference for scientific communication
- Machine-supported reasoning and decisionsupport

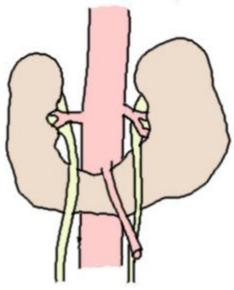
Bio-ontologies!

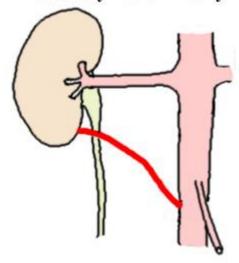
Upper level classification of entities


	Individuals (concrete objects)	Universals (Concepts, Classes of Individuals)	
Continuants (physical objects,)	my left handa blood samplea concrete cell	Hand,BloodCell	
Occurrents (events, processes, actions)	 Peter's diabetes appendectomy of Patient #12345 	Diabetes mellitusAppendectomy	









Horseshoe Kidney

Accessory Renal Artery

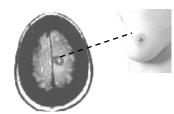
Mereotopological Quiz
 Cranial Cavity has-location Head

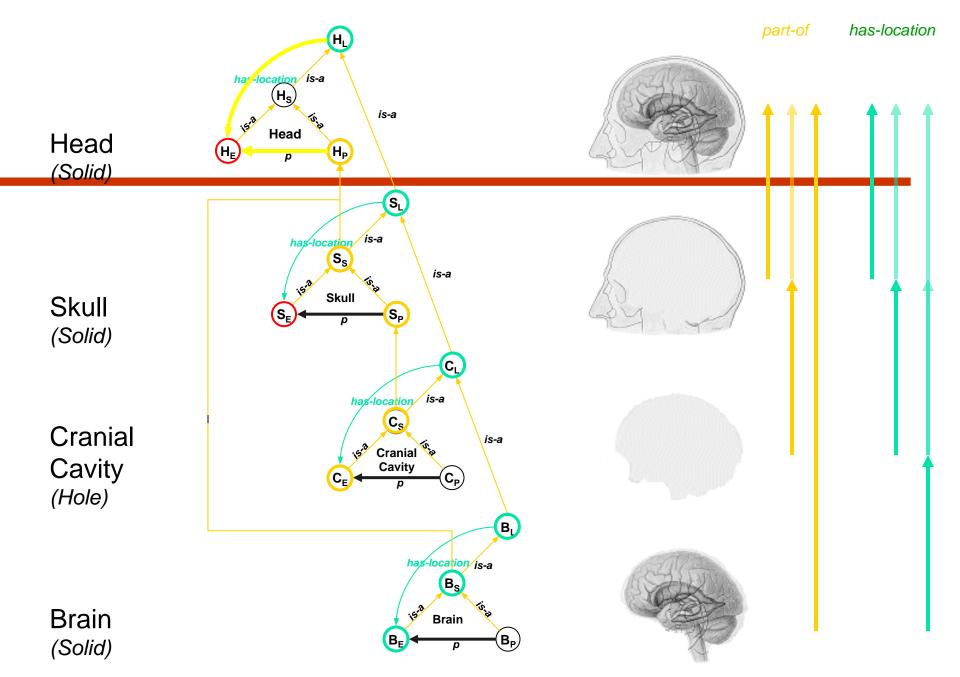
Is Cranial Cavity part-of Head?

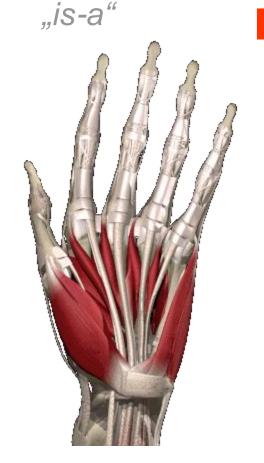
 Brain has-location Cranial Cavity Is Brain part of Cranial Cavity?

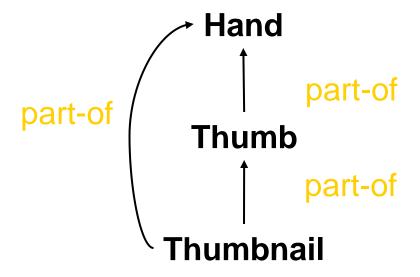
 \odot

 Glioblastoma has-location Brain Glioblastoma part-of Brain?


 Brain metastasis has-location Brain Brain metastasis part-of Brain?




Images from: Sobotta CD-ROM


transitive closure by taxonomic subsumption

Subtheories of an Ontology of Biological Structure

"is-a" Marathut" "connection"

Mereology "connec

Subtheories of an Ontology of Biological Structure

TI TUNOTION CITCHEOLOGY OF TOPOLOGY

"is-a"

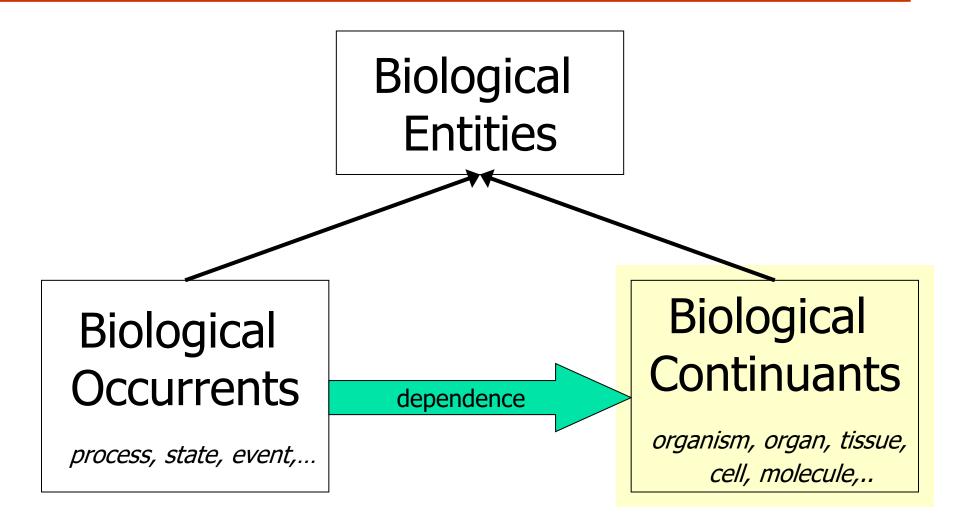
"part-of"

"connection"

Canonical relationships

(Schulz et al. AMIA 2000)

Topological Primitives:

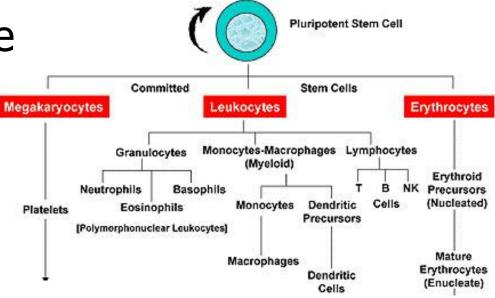


Structure of Talk

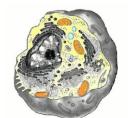
- Introduction
- Foundational Relations
- Foundational Attributes
- Theories
 - Granularity
 - Species
 - Development
 - "Canonicity"

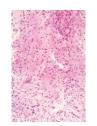
The World of Life Sciences...

Generalized Representation of Living Systems: Top Level



Ontological Account for Biological Continuants


- Foundational Relations
- Foundational Attributes
- Theories
 - Granularity
 - Species
 - Development
 - "Canonicity"


Granularity

Taxonomic: degree of specialization

Mereologic: degree of dissection

{molecular level, cellular level, tissue level, organ level, population level}

Change in Granularity level may be non-monotonous

- Change of sortal restrictions:
 - \blacksquare 3-D \rightarrow 2-D boundary
 - Count concept → Mass concept
- Change of relational attributions:
 - ■disconnected → connected