

International Conference on Formal Ontology in Information Systems

Ontological Foundations of Biological Continuants

Stefan Schulz, Udo Hahn

Department of Medical Informatics University Hospital Freiburg (Germany) Text Knowledge Engineering Lab University of Jena (Germany)

Representation of Continuants in Bio-ontologies

- Human Anatomy
 - Foundational Model of Anatomy (FMA)
 - Portions of SNOMED, OpenGalen, MeSH
- Other Organisms
 - Open Biological Ontologies (OBO)
 - ■Mouse (developmental stages), Zebrafish, Drosophila,...
- Species-Independent
 - ■Gene Ontology: Cellular Component branch

Size: 10^3 (Adult Mouse) – 10^5 (FMA)

Mouse (embryonal stage TS11, source: MGI)

- cardiovascular system
- - heart
- - cardiogenic plate

Mouse (embryonal stage TS18, source: MGI)

- cardiovascular system
- - heart
- - atrio-ventricular canal
- - atrium
- - bulboventricular groove
- - bulbus cordis
- - endocardial cushion tissue
- - mesentery
- - outflow tract
- - pericardium
- - primitive ventricle
- - sinus venosus

Mouse (embryonal stage TS26, source: MGI)

- cardiovascular system
- - heart
- - aortic sinus
- - atrio-ventricular canal
- - atrio-ventricular cushion tissue
- - atrium
- - bulbar cushion
- - endocardial cushion tissue
- - endocardial tissue
- - mesentery
- - pericardium
- - trabeculae carneae
- - valve
- - ventricle

- heart
- - heart muscle
- - adult aortic funnel
- - adult ostia
- - dorsal diaphragm
- - heart chamber
- - terminal opening

Zebrafish (adult, source: ZFIN)

- cardiovascular system
- - heart
- - atrium
- - bulbus arteriosus
- - hypobranchial vessels
- - sinus venosus
- - ventricle

Human, Adult, (source: FMA)

- cardiovascular system
- heart
- - wall of heart
- - right atrium
- - left atrium
- - right ventricle
- left ventricle
- right side of heart
- left side of heart
- - fibrous skeleton of heart
- - papillary muscle
- - cardiac valve
- - tricuspid valve
- - mitral valve
- - aortic valve
- - pulmonary valve
- - interatrial septum
- ---(...)

Foundational Relations

General Attributes

Foundational Relations

General Attributes

■Foundational Relations

General Attributes

Some Foundational Relations between Biological Continuants

Rel(x,y) y	Classes	Individuals
Classes	Is-A	
Individuals	Instance-of	part-of, has-location has-branch, bounds, connects has-developmental-form

Some Foundational Relations between Biological Continuants

Rel(x,y) y	Classes	Individuals
Classes	Is-A	
Individuals	Instance-of	part-of, has-location has-branch, bounds, connects has-developmental-form

Some Foundational Relations between Biological Continuants

Rel(x,y) y	Classes	Individuals
Classes	Is-A, Part-Of, Has-Location Bounds, Has-Branch, Connects Has-Developmental-Form	
Individuals	Instance-of	part-of, has-location has-branch, bounds, connects has-developmental-form

Class-Level Relations (I)

"Cell has-part Axon"

(Gene Ontology)

Do cells without axons exist?

Do axons without cells exist?

"Neuron has-part Axon" (FMA)

> Does every neuron has an axon?

Axon hillock

Axon hillock

Axon hillock

Axon hillock

Axon hillock

Axon hillock

Schwann cell (one internode)
(sheath of Schwann)

Telodendria
(terminal branches)

Axonal terminal

Cell body

(biosynthetic center)

Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Class-Level Relations (II)

"Cell has-part Axon"
(Gene Ontology)

Do cells without axons exist?

Do axons without cells exist?

"Neuron has-part Axon" (FMA)
Nissi b

Does every neuron has an axon?

"Keep in mind that part_of means can be a part of, not is always a part of "
GO Editorial Style Guide, Oct 2003

"The part_of relationship (...) is usually necessarily is_part"

GO Editorial Style Guide, Jan 2004

(biosynthetic center)

Axon (impulse generating and conducting displayed and conducting displaye

"A part_of B if and only if: for any instance x of A there is some instance y of B which is such that x stands to y in the instance-level part relation, and vice versa."

Rosse & Smith MEDINFO 2004

Class-Level Relations (III)

A, B: classes,

inst-of: class membership

rel: relation between instances

Rel: relation between classes

```
Rel(A, B) =_{def}

\forall x: inst-of(x, A) \rightarrow \exists y: inst-of(y, B) \land rel(x, y)
```

```
cf.
Schulz (AMIA 2001)
Schulz & Hahn (KR 2004, ECAI 2004)
Rosse & Smith (MEDINFO 2004)
```

■Foundational Relations

■General Attributes

General Attributes (top level categories)

Point

1-D

2-D

3-D

 \times

Solids

Holes

Boundaries

Pluralities

Masses

Count Objects

■Foundational Relations

- General Attributes
- Theories

"Heart"

- A set of formal axioms which describe a restricted (local) domain.
- Four orthogonal theories for Biological Structure
 - Granularity
 - **■**Species
 - Development
 - **■**Canonicity

- A set of formal axioms which describe a restricted (local) domain.
- Four orthogonal theories for Biological Structure

Granularity	epistemiological
■Species	
■ Development	ontological
■Canonicity	

- A set of formal axioms which describe a restricted (local) domain.
- Four orthogonal theories for Biological Structure
 - Granularity
 - **■**Species
 - Development
 - **■**Canonicity

Granularity

Classification (level of detail of class distinction)

(taxonomy)

Granularity

Classification (level of detail of class distinction)

Cell Nucleus

Dissection (focus on organism, tissue, cell, molecule)

(partonomy)

Granularity of Dissection

- Change in Granularity level may be non-monotonous
 - Change of sortal restrictions:
 - \blacksquare 3-D → 2-D boundary
 - ■Plurality → Mass object
 - Change of relational attributions:
 - ■disconnected → connected

Granularity

included-by

- Classification (level of detail of class distinction)
- Dissection (focus on organism, tissue, cell, molecule)
- Relations (relation hierarchy vs. few foundational relations)

Granularity of Relations

included-by(CellNucleus, Cell)

part-of(CellNucleus, Cell)

included-by(VirusProtein, Cell)

part-of(VirusProtein, Cell) ??

- A set of formal axioms which describe a restricted (local) domain.
- Four orthogonal theories for Biological Structure
 - Granularity
 - **■**Species
 - Development
 - **■**Canonicity

Linnean Taxonomy of Species

Linnean Taxonomy of Species

Linnean Taxonomy of Species

Species

Introduction of axioms at the highest common level

- A set of formal axioms which describe a restricted (local) domain.
- Four orthogonal theories for Biological Structure
 - Granularity
 - **■**Species
 - **■**Development
 - **■**Canonicity

Development

- Represents timedependent
 "snapshots" from the
 life cycle of an
 organism, e.g.,
 zygote, embryo,
 fetus, child, adult
- Development stages are speciesdependent e.g. metamorphosis

- A set of formal axioms which describe a restricted (local) domain.
- Four orthogonal theories for Biological Structure
 - Granularity
 - **■**Species
 - Development
 - **■**Canonicity

■ Degrees of "Wellformedness" of Biological

Structure:

Canonic structure

- Degrees of "Wellformedness" of Biological Structure:
 - Canonic structure
 - Structural Variations

Degrees of "Wellformedness" of Biological

Structure:

- Canonic structure
- Structural Variations
- Pathological Structure

acquired

congenital

- Degrees of "Wellformedness" of Biological Structure:
 - Canonic structure
 - Structural Variations
 - Pathological Structure
 - Lethal Structure

Degrees of "Wellformedness" of Biological Structure:

- Canonic structure
- Structural Variations
- Pathological Structure
- Lethal Structure
- Derivates of biological structure

Five canonicity levels: each level introduces axioms valid for higher levels

Level	1	2	3	4	5
Theory	any amount	any living	any living	living organism	ideal
	of matter, if of	or dead	organism	without pathologic	organism
	biological origin	organism		modifications	
Set of	n_1	n_2	n_3	n_4	n_5
Axioms		$n_1 \subset n_2$	$n_2 \subset n_3$	$n_3 \subset n_4$	$n_4 \subset n_5$

Examples

low

low

Granularity

Species

general		specific

high

high

Development

embr	yo				adult

Coverage: Foundational Model of Anatomy

Granularity

Species

general specific
embryo adult
low high

Development

Coverage: Gene Ontology

low

Granularity

Species

general specific embryo adult

high

Development

Coverage: Mouse Anatomy

low

Granularity

Species

high

Development

Examples

Connects (RightVentricle, Left Ventricle)

Granularity	= normal	
Species	= mammal	f-l
Development	= adult	false
Canonicity	= 4-5	

true

Granularity = any

Species = vertebrate
Development = early embryo

Canonicity = any

Is-A (Membrane, 3-D object)

Conclusion

- Integration of bio-ontologies requires
 - Uncontroversial semantics of relations and attributes
 - Clear commitment to theories, such as granularity, species, development and canonicity
- Redundancy can be avoided
 - Encoding axioms at the highest common level in the species taxonomy (e.g. vertebrates, arthropods, primates) and benefit from inheritance in subsumption hierarchies

International Conference on Formal Ontology in Information Systems

Ontological Foundations of Biological Continuants

Stefan Schulz, Udo Hahn

Department of Medical Informatics University Hospital Freiburg (Germany) Text Knowledge Engineering Lab University of Jena (Germany)