A Description Logics Approach to Clinical Guidelines and Protocols

Stefan Schulz

Department of Med. Informatics Freiburg University Hospital Germany

Udo Hahn

Text Knowledge Engineering Lab Freiburg University, Germany

Formalization of CGP

- Up until now:
 - CGPs are treated as **plans**: actions, states, transition functions. Methodologies from the AI Planning & OR Scheduling community
- New Approach:
 - Formal Ontology methodology can be used to represent (at least, selected) aspects of CGPs in order to support consistency, fusion, and modularization of CGPs

Our Proposal

- Ontological analysis of CGPs
 - Introduce basic categories
 - Classification of domain entities
 - Axiomatize foundational relations
 - Study interrelations between domain entities
- Choose a logic framework for the formalization of the ontology
 - Representation: Description Logics (FOL subset)
 - Reasoning: Powerful Taxonomic Classifiers (e.g., FaCT, RACER)

Fundamental Distinctions

		_
Continuants	VS.	Occurrents
Physical Objects, Substances, Organisms, Body Parts		Processes, Events, Actions, Courses of Diseases, Treatment Episodes
Individuals	VS.	Classes
my left Hand, Paul's Dia- betes, Appendectomy of Patient #230997		Hand, Diabetes, Appendectomy

How do CGPs fit into this framework?

Guidelines and Occurrents

Proposal: A Guideline G can be mapped to a set of classes of occurrents:

$$E = \{E_1, E_2, ..., E_n\}$$

- The elements of E correspond to all allowed paths through a Guideline G
- Each element of *E* represents as a conceptual abstraction – a class of individual clinical occurrents

Simplified Chronic Cough Guideline

E1 = (CC, AN, PE, SM, CS, NC)

E2 = (CC, AN, PE, SM, CS, CO, CX)

E3 = (CC, AN, PE, NS, CX)

E4 = (CC, PE, AN, SM, CS, NC)

E5 = (CC, PE, AN, SM, CS, CO, CX)

E6 = (CC, PE, AN, NS, CX)

Temporal sequence of clinical occurrents

Simplified Chronic Cough Guideline

E1 = (CC, AN, PE, SM, CS, NC)

E2 = (CC, AN, PE, SM, CS, CO, CX)

E3 = (CC, AN, PE, NS, CX)

E4 = (CC, PE, AN, SM, CS, NC)

E5 = (CC, PE, AN, SM, CS, CO, CX)

E6 = (CC, PE, AN, NS, CX)

Clinical occurrence

Temporal sequence of clinical occurrents

Simplified Chronic Cough Guideline

E1 = (CC, AN, PE, SM, CS, NC)

E2 = (CC, AN, PE, SM, CS, CO, CX)

E3 = (CC, AN, PE, NS, CX)

E4 = (CC, PE, AN, SM, CS, NC)

E5 = (CC, PE, AN, SM, CS, CO, CX)

E6 = (CC, PE, AN, NS, CX)

Temporal sequence of clinical occurences

Taxonomic Order (is-a)

relates classes of specific occurrences to classes of general ones: $is-a(CX, XR) \rightarrow_{def} \forall x: CX(x) \rightarrow XR(x)$

Taxonomic Order (is-a)

relates classes of specific occurrences to classes of general ones: $is-a(CX, XR) \rightarrow_{def} \forall x: CX(x) \rightarrow XR(x)$

Mereologic Order (has-part)

relates classes of occurrences to classes of sub-occurrences

 $\forall x: PE(x) \rightarrow \exists y: HA(y) \land has-part(x,y)$

Taxonomic Order (is-a)

relates classes of specific

occurrences to classes of general ones:

is-a(CX, XR) \rightarrow def \forall x: CX(x) \rightarrow XR(x)

Mereologic Order (has-part)

relates classes of occurrences classes of sub-occurrences

 $\forall x: PE(x) \rightarrow \exists y: HA(y) \land has-part(x,y)$

Temporal Order (follows / precedes)

relates classes of occurrences in terms of temporal succession

occurrent concepts

occurrent concepts definition of U

occurrent concepts definition of U definition of E

occurrent concepts definition of U definition of E

U_E inherits properties of U

occurrent concepts definition of U definition of E U_E inherits properties of U definition of F as a subconcept of E

occurrent concepts
definition of U
definition of E
U_E inherits properties of U
definition of F as a subconcept
of E

F inherits properties of E

occurrent concepts
definition of U
definition of E
U_E inherits properties of U
definition of F as a subconcept
of E

F inherits properties of E

F, additionally, has a T which occurs between U and S

occurrent concepts
definition of U
definition of E
U_E inherits properties of U
definition of F as a subconcept
of E

F inherits properties of E F, additionally, has a T which occurs between U and S

inferences / constraints (formalization see paper)

occurrent concepts
definition of U
definition of E
U_E inherits properties of U
definition of F as a subconcept
of E

F inherits properties of E F, additionally, has a T which occurs between U and S

inferences / constraints (formalization see paper)

Benefits

- Description Logics implementations allow taxonomic classification and instance recognition.
 - Checking of logical integrity in the management, cooperative development and fusion of CGPs
 - Detecting redundancies and inconsistencies, e.g., conflicting orders when applying several CGPs simultaneously to one clinical case
 - Auditing of concrete instances (cases) from the Electronic Patient Record in terms of cross-checking against applicable CGPs (quality assurance, epicritic assessment)

Discussion

- First sketch of ongoing research
- Based on Description Logics \mathcal{ALCN}
- Up until now, not all (temporal) inferencing capabilities are supported
- Needs to be validated under real conditions
- Recommended for further investigation
 - Tool: OilED Knowledge editor (oiled.man.ac.uk) with built-in FaCT classifier
 - Theory: Baader et al (eds.) The Description Logics Handbook