Enabling Part-Whole Reasoning in Biomedical Terminologies

Stefan Schulz MD

Department of Medical Informatics University Hospital Freiburg, Germany

Objectives

- Understand the ontological disctinction between taxonomic (*is-a*) and partonomic (*part-of*, *has-part*) hierarchies in the biomedical domain.
- Understand the peculiarities of partonomic reasoning in comparison to taxonomic reasoning
- Appreciate a formal ontology engineering approach that emulates partonomic reasoning by classification-based taxonomic reasoning
- Discuss these findings in the light of the requirements of knowledge engineering in medicine and biology

Objectives

- Understand the ontological disctinction between taxonomic (*is-a*) and partonomic (*part-of*, *has-part*) hierarchies in the biomedical domain.
- Understand the peculiarities of partonomic reasoning in comparison to taxonomic reasoning
- Appreciate a formal ontology engineering approach that emulates partonomic reasoning by classification-based taxonomic reasoning
- Discuss these findings in the light of the requirements of knowledge engineering in medicine and biology

Double Hierarchical Structure: Anatomy

Taxonomic Order Mereologic Order (is a) (part of, has part)

Double Hierarchical Structure: Biochemistry

Taxonomic Order Partonomic Order (is a) (part of, has part)

Double Hierarchical Structure: Events

Taxonomic Order Partonomic Order Temporal Order

(is a) (part of, has part) (follows)

Double Hierarchical Structure: Actions

Conclusion

- Ubiquity of partonomies in the ordering of biomedically relevant knowledge
- Part-of and has-part relation capture notions of
 - physical parts (components) and wholes
 - constituents of substances
 - events and subevents
 - actions and parts of actions

Partonomies in Medical Terminologies (I)

- ICD: only taxonomic structure
- Terminologia Anatomica: no explicit hierarchical relations
- MeSH: broader/narrower hierarchy regardless of taxonomic or partonomic meaning
- Read Codes, SNOMED CT: "Structure" concepts subsume both an anatomical entity and its parts

Partonomies in Medical Terminologies (II)

- Digital anatomist: clear distinction between partof/has-part and is-a. Recently sub-relations of partof/has-part
- GeneOntology: clear distinction between part-of and is-a.
- OpenGalen: clear distinction between part-of and is-a. Formal reasoning across part-of
- UMLS: mostly broader/narrower hierarchies, partof/is-a restricted to anatomy (comes from Digital Anatomist)

Objectives

- Understand the ontological disctinction between taxonomic (*is-a*) and partonomic (*part-of*, *has-part*) hierarchies in the biomedical domain.
- Understand the peculiarities of partonomic reasoning in comparison to taxonomic reasoning
- Appreciate a formal ontology engineering approach that emulates partonomic reasoning by classification-based taxonomic reasoning
- Discuss these findings in the light of the requirements of knowledge engineering in medicine and biology

Commonalites of Taxonomic Reasoning (I)

Classes vs. Instances:

- Instances are concrete objects in the world, e.g. my left thumb, Peter's cat, Mr X's diabetes, ...
- Classes denote abstract entities, e.g. all fingers, all cats, all occurrences of diabetes
- The assignment of individuals to a class normally obeys defined *properties*.

Commonalites of Taxonomic Reasoning (II)

Class subsumption & Inheritance:

- One class C_1 subsumes an other one C_2 if each of the instances of C_2 is an instance of C_1 , too.
- All properties of C_2 are inherited by C_1 . Example: Birds can fly → eagles can fly

Multiple inheritance

Commonalites of Taxonomic Reasoning (III)

Transitivity & Roles:

- C₁ subsumes C_{2,} and subsumes C₃ →
 C₁ subsumes C₃
 Example: lymphocyte is a leukocyte is a cell →
 lymphocyte is a cell
- Roles: attributes containing links to another concept, e.g.

Hepatitis, Hepatitis A etc.

Commonalites of Partonomic reasoning (I)

- Mereology: reasoning about individuals, not abstract entities
- part-of relation in its broadest sense
 - transitive: I_1 part-of I_2 , I_2 part-of I_3 , $\rightarrow I_1$ part-of I_3
 - reflexive: I_1 part-of $I_2 \rightarrow I_2$ part-of I_1
- Subrelations of part-of
 - non-reflexive: proper-part-of (common notion when describing the physical world)
 - non-transitive: combinations of subrelations (hand *part-of* musician *part-of* orchestra)

Commonalites of Partonomic reasoning (II)

■ Inverse relation: *has-part* $I_1 part-of I_2 \leftrightarrow I_2 has-part I_1$ *MyBrain part-of MyHead* \leftrightarrow *MyHead* has-part MyBrain

■ Overlap: I₁ part-of I₂, I₁ part-of I₃ →
I₂ overlaps with I₃
MyBrain part-of MyHead, MyBrain part-of MyCNS →
MyHead overlaps MyCNS

Disconnected: I₂ disconnected from I₃ if they do not share any parts MyHead disconnected from MyFoot, but also MyHead disconnected from X's CNS Taxonomies (*is-a*) vs. Partonomies (*part-of*, *has-part*)

- Main difference:
 - The is-a relation relates <u>concepts</u> (classes of individuals)
 - part-of and has-part relate individuals (concepts don't have parts !)
- How to use the part-of relation in conceptual systems ?
 - Additional semantics needed !

Partonomic Relations between Individuals and Concepts

"Heart has-part Mitral Valve"

- Possible Meanings:
 - ∃x,y: Heart(x) ∧ Mitral-Valve(y) ∧ x has-part y "a heart can have a mitral valve"
 - ∀x:∃y: Heart(x) ∧ Mitral-Valve(y) ∧ x has-part y "every heart has a mitral valve as part"
 - ∀x:∃y: x has-part y ⇔ ∀y:∃x: y part-of x "If for every x there is a part y, then for every y there is an x it is part of

Semantics for Partonomies in Concept Systems (I)

A has-necessary-whole B: All instances of a concept A have the role part-of filled by an instance of B (necessary condition)
A \[] part-of.B

B has-necessary-part A: All instances of a concept B have the role has-part filled by an instance of A (necessary condition) B = 3has-part.A

A has-necessary-whole B does not necessarily imply B has-necessary-part A Semantics for Partonomies in Concept Systems (II)

- A has-possible-whole B: Instances of A and B are in the extension of the relation part-of
- B has-possible-part A: Instances of A and B are in the extension of the relation has-part.
- A has-necessary-whole B implies B has-possible-part A
- A has-possible-whole B implies B has-possible-part A
- B has-necessary-part A implies A has-possible-whole B
- B has-possible-part A implies A has-possible-whole B
- A disconnected from B: nothing can be part of both and instance of A and of B

Stipulations for Part/Whole Combinations

	A hnw B	B hnp A	<i>pw</i> (A,B)	<u>dc</u> (A,B)
B hnw C	A hnw C	<i>pw</i> (A,B)	<i>pw</i> (A,B)	<i>pw</i> (A,B)
C hnp B	<i>pw</i> (A,B)	C hnp A	<i>pw</i> (A,B)	<i>pw</i> (A,B)
<i>pw</i> (B,C)	<i>pw</i> (A,B)	<i>pw</i> (A,B)	<i>pw</i> (A,B)	<i>pw</i> (A,B)
dc(B,C)	dc(A,C)	<i>pw</i> (A,B)	<i>pw</i> (A,B)	<i>pw</i> (A,B)

dc = disconnected (cannot have common parts)

Α

Examples for part-of / has-part Asymmetry

- Every *thumb* is part of a *hand*, but not every *hand* has a *thumb*
- Every spleen has lymph follicles, but not all lymph follicles are part of a spleen
- Every cell nucleus is part of a cell but not every cell has a nucleus
- Every amino acid has a -NH2 group, but not every -NH2 group is part of an amino acid
- Every meiosis has a prophase, but not every prophase is part of a meiosis
- Every defibrillation is part of a CPR, but not in every CPR there is a defibrillation

Reasons for part-of / has-part Asymmetry

Role Propagation & Concept Specialization

Let *R* be an arbitrary relation

Role Propagation:

$$y \sqsubseteq \exists part-of. z \land x \sqsubseteq \exists R. y \Rightarrow x \exists r. z$$

Concept Specialization:

$$y \sqsubseteq \exists part-of. z \land w \sqsubseteq \exists R. z \land x \sqsubseteq \exists R. y \Rightarrow x \sqsubseteq w$$

 $xRy \wedge wRz \wedge ySz \Longrightarrow xIsAw$

Reasoning Anomalies within Partonomies

Other examples

insulin synthetase produce insulin

beta cells has-part insulin synthetase

 \rightarrow beta cells *produce* insulin

Langerhans islets has-part beta cells

→ Langerhans islets *produce* insulin pancreas *has-part* Langerhans islets

→ pancreas *produce* insulin

amputation of toe has-target toe toe part-of foot

→ amputation of toe has-target foot foot part-of leg

→ amputation of toe has-target leg

amputation of toe *las-location* toe toe *part-of* foot

→ amputation of toe *las-location* foot

Backbone Fracture *fracture-of* Backbone Vertebral Fracture *fracture-of* Vertebra Vertebra *part-of* Backbone

→ Vertebral Fracture *fracture-of* Backbone

Spinous Process Fracture *fracture-of* Vertebra Backbone Fracture *fracture-of* Backbone Spinous Process *part-of* Vertebra Vertebra *part-of* Backbone

→ Spinous Process Fracture fracture-of Backbone

Pancreatectomy *removal-of* Pancreas Pancreas *has-part* Beta Cells Vertebra *part-of* Backbone

→ Pancreatectomy *removal-of* Beta Cells

Analysis of Reasoning Patterns

- Propagation "downstream": "removal-of", "loss-of", "death-of"
- Propagation "upstream": "location-of"
- No propagation: "has-target"
- Uncertain propagation: "inflammation-of", "fractureof", "excision-of"

Important: Most relations have shallow semantics: generalization of propagation behavior is difficult !

Objectives

- Understand the ontological disctinction between taxonomic (*is-a*) and partonomic (*part-of*, *has-part*) hierarchies in the biomedical domain.
- Understand the peculiarities of partonomic reasoning in comparison to taxonomic reasoning
- Appreciate a formal ontology engineering approach that emulates partonomic reasoning by classification-based taxonomic reasoning
- Discuss these findings in the light of the requirements of knowledge engineering in medicine and biology

Requirements for a Formal Approach

Retrieve all necessary parts (of necessary parts)* of a concept

Blood has-part Erythrocytes
 Erythrocytes has-part Erythrocyte
 <u>Erythrocyte has-part Hemoglobin</u>
 Blood has-part Hemoglobin

Retrieve all necessary wholes (of necessary wholes)* of a concept

Nucleolus part-of Cell-Nucleus
 <u>Cell-Nucleus part-of Eucaryotic-Cell</u>
 Nucleolus part-of Eucaryotic-Cell

Control propagation of properties along part/whole hierarchies

 Gas-Exchange function-of Alveolus Alveoli has-part Alveolus
 <u>Lung has-part Alveoli</u>
 Gas-Exchange function-of Lung

Mitosis function-of Eucaryotic-Cell <u>Human-Body has-part Eucaryotic-Cell</u> Mitosis function-of Human-Body **???**

Proposed Solution

Introduction of "reificator concepts" for each concept and each mereological role

Mereological reasoning via concept subsumption

 Parsimonious language: concept subsumption, existential quantification, conjunction

Part-Of Hierarchies by SEP triplets

Schulz et al. AMIA 98; Hahn et al. AAAI 99

Part-Of Reification by SEP triplets

Schulz et al. AMIA 98; Hahn et al. AAAI 99

SEP Triplets

- Emulate part-of-hierarchies by taxonomies
- Emulate transitivity of concepts
 Finger is a Hand_Part, Hand_Part is a Arm_Part ⇒
 Finger is a Arm_Part
- Necessary wholes can be inferred by taxonomic subsumption
- What about necessary parts ?

Extended SEP

Example 1

Example 1

Example 2 (role propagation enabled)

Role Propagation enabled

Example 3 (role propagation disabled)

Amputation of a body part targets the body part itself, not a part of it Amputation of Thumb = Amputation $\land \exists$ has-target. Thumb $\land \forall$ has-target. Thumb

Example 4 (role propagation enabled)

Loss of a body implies the loss of all necessary parts

Loss of Thumb = Loss of BodyPart $\land \exists loss-of. Thumb_{Si} \land \forall loss-of. Thumb_{Si}$

Example 4 (role propagation enabled)

Insulin secretion is a function of the pancreatic c-cells and anything which necessarily includes them.

InsulinSecretion = \exists function-of. $C_{Si} \land \forall$ function-of. C_{Si}

Conclusion

- Clarification of the meaning of mereological relationships in the biomedical domain
- Expressing mereological relationships (necessary wholes / necessary parts) and constraints by complex taxonomies
- Mereological reasoning is reduced to taxonomic reasoning
- Benefits:
 - parsimonious language
 - expressivity WRT transitivity, flexible role propagation
 - massive knowledge acquisition & engineering (KR00)