Transfer learning for classifying Spanish and English text by clinical specialties

Alexandra POMARES-QUIMBAYA
Pilar LÓPEZ-ÚBEDA
Stefan SCHULZ

Javeriana University, Bogotá, Colombia
Jaén University, Spain
Medical University of Graz, Austria

31st Medical Informatics Europe Conference - May 31, 2021
Rationale for classifying text by clinical specialty

- Language varies between clinical specialties
- Knowing the specialty adds important context for better text interpretation, e.g.
 - “RTA” = “Road traffic accident” (traumatology) vs. “RTA” = “Renal tubular acidosis” (nephrology)
 - “body”, “infarction”, “tube”, “nail”, ….
- Train language models from open data and use them for classifying text by the specialty(ies) it belongs to?
Background

Multi-label classification by clinical specialties

Improving biomedical language processing

Transfer learning using transformers

Languages: Spanish and English
Selection of clinical specialties

Generation of the Spanish test dataset / corpus

Training of models of the BERT family

Generation of the Spanish and English training dataset

Machine Translation of the corpus to English

Evaluation

Steps
Selecting clinical specialties

Clinical Specialties

Training dataset: titles and abstracts

TRAINING DATA GENERATION

Extraction of articles from MEDLINE using queries:
- Title or abstract in Spanish and English
- Manual creation of filters for each specialty
- Excluded case reports (reserved for testing)

Statistics:
- Number of records: 194,527
- Number of specialties: 18

Partitions: 80% training + 20% development

Query example for CARDIOLOGY

SPA[LA] AND
not Case Reports[PT] AND
("Cardiology"[TA] OR "Cardiology"[TIAB] OR
"Cardiology"[PT] OR "Cardiology"[PS] OR "Cardiology"[CN]
OR "Cardiology"[SI] OR "Cardiology"[OT] OR
"Cardiología"[SH:noexp] OR "Cardiología"[PT] OR
"Cardiología"[PS] OR "Cardiología"[CN] OR
"Cardiología"[SI] OR "Cardiología"[OT] OR
"Cardiología"[AD] OR "Cardiovascular Diseases"[MH] OR
"Heart Diseases"[MH] OR "Vascular Diseases"[MH])
Spanish test corpus: case descriptions from full texts

TEST DATA GENERATION

Extraction of articles from MEDLINE using queries
- Annotated with Publication Type Case reports (as proxies for “real” clinical documents)
- Accessible full texts
- Reports manually extracted from the full texts
- Manually annotated by medical specialty(ies)

Statistics:
- 227 articles
- 263 case descriptions

Case Description Example - Dermatology

Se trata de un niño de 15 meses de edad, previamente sano. Consulta a su pediatra de cabecera por presentar pápulas eritematosas en muñeca izquierda. Algunas de ellas se tornaron costrosas y en pocos días se sumaron pápulas, placas y pequeños nódulos eritematosos con escamas en axila derecha, región supraumbilical y axila izquierda. Se encontraba en buen estado general y afebril.
Machine translation of Spanish case descriptions to English

GENERATION OF A PARALLEL SPANISH-ENGLISH CORPUS

Library: Google Translate

Spanish case description example
Un paciente masculino de 30 años de edad, 10 años de evolución previo a la cirugía, con lesión aislada longitudinal en el cuerno posterior del menisco medial, zona roja-blanca, sin asociación con lesión ligamentaria reparado con dos suturas y dos Fastener.

English case description example
A 30-year-old male patient, 10 years of evolution prior to surgery, with isolated longitudinal lesion in the posterior horn of the medial meniscus, red-white area, without association with ligament lesion repaired with two sutures and two Fastener.
BERT models and hyperparameters

Library: Hugging Face

Spanish:
- BETO: bert-base-spanish-wwm-uncased
- mBERT: bert-base-multilingual-cased

English:
- BioBERT: biobert-base-cased
- BERT: bert-base-cased
- mBERT: bert-base-multilingual-cased

<table>
<thead>
<tr>
<th></th>
<th>Spanish</th>
<th></th>
<th>English</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BETO</td>
<td>mBERT</td>
<td>BioBERT</td>
<td>BERT</td>
<td>mBERT</td>
<td></td>
</tr>
<tr>
<td>Batch size</td>
<td>8</td>
<td>16</td>
<td>8</td>
<td>16</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Max Len</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Learning Rate</td>
<td>2e-5</td>
<td>3e-5</td>
<td>2e-5</td>
<td>2e-5</td>
<td>3e-5</td>
<td></td>
</tr>
<tr>
<td>Epoch</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Language</th>
<th>System</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
<th>F-score (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish</td>
<td>BETO</td>
<td>54.61</td>
<td>69.59</td>
<td>61.20</td>
</tr>
<tr>
<td></td>
<td>mBERT</td>
<td>58.76</td>
<td>50.23</td>
<td>54.16</td>
</tr>
<tr>
<td>English</td>
<td>BioBERT</td>
<td>66.25</td>
<td>60.60</td>
<td>63.30</td>
</tr>
<tr>
<td></td>
<td>BERT</td>
<td>54.53</td>
<td>59.68</td>
<td>56.99</td>
</tr>
<tr>
<td></td>
<td>mBERT</td>
<td>64.16</td>
<td>49.08</td>
<td>55.61</td>
</tr>
</tbody>
</table>

Other results using the training dataset:
https://github.com/plubeda/mie_2021/blob/main/Additional_results.md
Conclusion

❖ Moderate results
 ➢ Complexity of the multi-label classification task
 ➢ Cases may belong to several clinical disciplines, boundary decisions difficult
❖ Spanish dataset:
 ➢ BETO performance better than mBERT
❖ English dataset:
 ➢ BioBERT outperforms BERT
 ➢ BioBERT outperforms any Spanish model (despite possible information loss)
 ➢ Probable improvement if training models with biomedical data in Spanish (asBioBERT)
❖ To be done: use real clinical data for validation (less standardised language, less intricate clinical cases)
Transfer learning for classifying Spanish and English text by clinical specialties

Alexandra POMARES-QUIMBAYA*
Javeriana University, Bogotá, Colombia
Pilar LÓPEZ-ÚBEDA
Jaén University, Spain
Stefan SCHULZ
Medical University of Graz, Austria

*contact: pomares@javeriana.edu.co