Relational statements in OWL
Recipe for Failure ?
Naïve, semantic network style approach to relations

Examples
Hepatitis hasLocation Liver
Hand hasPart Thumb
Aspirin treats Headache
OWL-DL approach to relations: requires quantification

Concept C1 Relation R Concept C2

some
only
=1

Examples
Hepatitis hasLocation Liver
Hand hasPart Thumb
Aspirin treats Headache
OWL-DL approach to relations: requires quantification

Concept C1 \(\rightarrow \) Relation R \(\rightarrow \) Concept C2

Examples:
- Hepatitis subClassOf hasLocation some Liver
- Hand hasPart some Thumb
- Aspirin treats Headache
OWL-DL approach to relations: requires quantification

Examples
- Hepatitis subClassOf hasLocation some Liver
- Hand subClassOf hasPart some Thumb
- Aspirin treats some Headache
OWL-DL approach to relations: requires quantification

Examples

Hepatitis subClassOf hasLocation some Liver
Hand subClassOf hasPart some Thumb
Aspirin subClassOf treats some Headache
OWL-DL approach to relations: requires quantification

Examples

<table>
<thead>
<tr>
<th>Concept</th>
<th>Relation</th>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis</td>
<td>subClassOf hasLocation some Liver</td>
<td></td>
</tr>
<tr>
<td>Hand</td>
<td>subClassOf hasPart some Thumb</td>
<td></td>
</tr>
<tr>
<td>Aspirin</td>
<td>subClassOf treats some Headache</td>
<td></td>
</tr>
<tr>
<td>Hand</td>
<td>subClassOf hasPart only Thumb</td>
<td></td>
</tr>
</tbody>
</table>
OWL-DL approach to relations: requires quantification

Examples

<table>
<thead>
<tr>
<th>Concept</th>
<th>Relation</th>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis</td>
<td>subClassOf</td>
<td>hasLocation</td>
</tr>
<tr>
<td>Hand</td>
<td>subClassOf</td>
<td>hasPart</td>
</tr>
<tr>
<td>Aspirin</td>
<td>subClassOf</td>
<td>treats</td>
</tr>
<tr>
<td>Thumb</td>
<td>subClassOf</td>
<td>partOf</td>
</tr>
</tbody>
</table>

\[
\text{some} = 1
\]
OWL-DL approach to relations: requires quantification

Concept C1 Relation R Concept C2

Examples

<table>
<thead>
<tr>
<th>Concept</th>
<th>SubClassOf</th>
<th>Relation</th>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis</td>
<td>subClassOf</td>
<td>hasLocation</td>
<td>Liver</td>
</tr>
<tr>
<td>Hand</td>
<td>subClassOf</td>
<td>hasPart</td>
<td>Thumb</td>
</tr>
<tr>
<td>Aspirin</td>
<td>subClassOf</td>
<td>treats</td>
<td>Headache</td>
</tr>
<tr>
<td>Aspirin</td>
<td>subClassOf</td>
<td>treats</td>
<td>only</td>
</tr>
</tbody>
</table>
OWL-DL approach to relations: requires quantification

Examples

Hepatitis subClassOf hasLocation some Liver
Hand subClassOf hasPart some Thumb
Aspirin subClassOf treats some Headache

Headache subClassOf treatedBy some Aspirin
OWL-DL approach to relations: requires quantification

Examples

- Hepatitis subClassOf hasLocation some Liver
- Hand subClassOf hasPart some Thumb
- Aspirin subClassOf treats some Headache
- Headache subClassOf treatedBy only Aspirin
Typical errors

Tonsillectomy planned SubClassOf

rg some (associatedProcedure some Tonsillectomy) and…

Skin_Squamous_Cell_Carcinoma_in_situ SubClassOf

(diseaseMayHaveFinding some Erythema) and…

Congenital absence of bile duct SubClassOf

findingSite some BileDuctStructure …

anti-Muellerian hormone isoform 1 unmodified form equivalentTo

'anti-Muellerian hormone isoform 1'

and lacks_modification some 'post-translational protein modification'

absent subClassOf

reciprocal_of some 'lacking processual parts'
Conclusion

- The use of OWL requires a precise ontological commitment
 - *is a hand without a thumb still a hand*
 - *what about a severed thumb*

- Many important statements cannot be adequately represented
 - OWL semantic enforces statements of the type „for all... some“ or „for all... only“
 - No way to express what is mostly or normally true