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1 Introduction

Animal experiments indicate that the protective effect of chemical UVfilters
against immune suppression due to sunlight might be quite different from their
protective effect against sunburn. Unfortunately deficiencies of the immune
system have been shown to be related to the development of skin malignancies.
The immune system’s ability to acquire contact allergies is suppressed by ex-
posure to sunlight. In this study the protective effect of 3 different sunscreen
preparations against this suppression is investigated.
Originally the study was designed for a pilot stage and 2 study stages. Due
to high error variance and heteroscedasticiy the final model was not available
before the last volunteer was in the study. Therefore formal optimal experi-
mental design methods could only be applied retrospectively. This analysis
will be presented here.

2 The study set-up

First the minimum erythema dose (MED) was assessed for each volunteer. Then
a sunscreen was applied on the left buttock in a standardized way. This should
protect against the subsequent application of a multiple (0 to 3) of the MED
multiplied by the sun protection factor. This quantity will also be called MED
below. Sensitisation was performed 24 hours later by application of a very ef-
fective but rarely used allergenic substance (DNCB) (Fig. 1). The other prepa-
rations had a sun protection factor of about 5.
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Figure 1: Slight (a) and intense (b) erythema caused by sensitisation through
DNCB. 3 weeks later the allergic reaction can be tested on the left upper arm.
The skin reaction for 4 different doses of DNCB after 49 (c) and 72 hours (d).

The allergic (i.e. immune) reaction was tested 3 weeks later the with DNCB on
the upper arm (challenge). The skin reaction was assessed by the dermal oedema
(change in skin thickness) after 49 and 72 hours, as measured by an ultrasound
device.
The treatment groups (A, B, C) were defined by 3 kinds of chemical UVfilters
applied before UV exposure. Sunlight doses were multiplied with the sun pro-
tection factor of the UVfilter. Group A was the control group and received sun
protection factor 1.
Each volunteer could undergo sensitisation only once. Due to restrictions only
80 persons could be enrolled. After the suspicion arose that women could show
extra variability due the menstrual cycle, they (n = 7) were excluded from the
analysis and recruitment was restricted to males after the pilot stage.
After inspection of the results of the pilot stage (20 volunteers, control treat-
ment) with sunlight doses from 0 to 3 MED, the dose range was restricted to
0 to 1.5 for the next 30 volunteers (10 per treatment group). Although initially
the use of optimal experimental designs was intended the next 30 doses were
arranged again relying on heuristical insight gained from [3], as at this stage it
was not possible to decide on which statistical model to use (Fig. 2).

3 The model

The objective of the study is to determine the MED dose at which the immune
reaction (oedema size) is decreased by half (ED50).
If the protective effect against immune suppression is similar to the protection
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Figure 2: MED doses by stage. Stage 0 was the pilot with treatment A only. The
priors for �2 came from the final model (see text).

against sunburn one would expect no differences between treatment groups.
Moreover one is interested in the position of ED50 relative to MED 1.
In order to answer these questions a 4-parameter logistic model with transforma-
tion of both dependent (with the power �0:5) and the independent (log trans-
form) data was fitted for the dependence of the skin thickness on the logarithm
of the MED doses:

T(y)= T
�

logistic
�

log(X)� log(a)
b

�
� c+ d

�
+ �

T a normalizing transformation (u�1=2)
y skin thickness

logistic(x) 1= f1+ exp(x)g
X sunlight dose in MED units
� independent errors with expectation 0
a ED50, the dose that causes 50% reduction of skin reaction

(one parameter for each treatment group).
b slope parameter
c change in skin thickness, oedema
d normal skin thickness

The normalizing transformation was chosen by fitting a regression line to log
transformed absolute residuals and log(MED) and inspection of the correspond-
ing scatter plot. However, variances were not stabilized completely. Outlying
observations were caused for example by blisters.
As parameter d was almost equal to the mean skin thickness before the chal-
lenge (1.14 mm), the oedema sizes (differences) were fitted in the sequel.
High variability of oedema sizes and scarce design points for low doses caused
divergence of ED50, slope parameters and/or oedema versus infinity in anal-
ysis by stage 1.
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Table 1: Nonparameteric bootstrap estimate of the final model
(n = 72,R = 200).

Parameter estimate median bias std. error
ED50A 0.62 -0.04 0.21
ED50B 0.67 -0.00 0.24
ED50C 0.83 0.01 0.30
b -0.35 0.01 0.35
c 1.14 0.01 0.23

The final model fit is shown in Fig. 3 and Table 1. Bootstrap samples showed
marked correlation (max = 0:81) of model parameters. This correlation can be
reduced (max= 0:52) by restricting the parameter space of the slope parameter
b to [�0:4; 0:2].

4 Multistage designs

In optimal experimental design usually some criterion on the Fisher informa-
tion matrix of the experiment is maximized. In nonlinear problems this crite-
rion in general depends on the parameters under study. In multistage designs
the design of further stages is based on parameter estimates that were obtained
in previous stages.
The necessity to know the parameter values can be overcome by Bayesian de-
sign methods [1]. The posterior distribution of the previous stages is he prior
distribution of the next stage. The optimal Bayesian design � maximizes the
following quadratic loss criterion:

�2(�)= �
Z

tr
n

A(�) [nI (�; �)]�1
o

p(�) d�:

Above I (�; �) is the expected Fisher information matrix, depending on the
model parameters � and the design measure �. p is the prior information on the
parameters. Weighting of parameters is achieved by the matrix A. If e.g. the
information on only one parameter is to be maximized one chooses A = ccT,
whereby c is an indicator vector.
Optimum Bayesian designs can be calculated easily with software by M. Clyde
[2] within XLISPSTAT [4].

5 Post hoc analysis of the study design

The univariate nonparametric bootstrap distributions from the final model were
used as prior distributions for finding the optimal Bayesian designs (more de-
tailed: rescaled �2distributions with the same first and second moments, dis-
cretized at 4 points). The standard deviation of the slope parameter b had to
be set to 0:1, as the optimizer failed to converge with the standard error of the
estimate obtained from the study.
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Figure 3: Figure 3: Measurements of oedema due to DNCB challenge of three
types of sunscreens (n = 72). Means on transformed scale (dotted lines) and
model estimates (solid lines).
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Figure 4: Optimal Bayesian design based on the final model.

Dummy coding of the treatment groups would have required 3 dimensions for
the design space. As the contribution of the location parameter a of each group
to the Fisher information is identical, the design was computed assuming one
group and design space dimension one. Results for 3 treatment groups were
obtained by multiplying the first derivative of the mean function with respect
to parameters b and c by

p
3.

The post hoc �2-criterion of the 3 study stages is given in Fig. 2. The design
choice for stage 2 was motivated by the optimal designs presented in [3] as no
reliable model was available at that time. However, assuming a = 1:1 instead
of a = 0:71 (an estimate in from these stage 1 models) and SEa = 0:4 instead
of SEa = 0:5 one gets �2 = �40. So the choice of design was not so far from
optimal. Unfortunately no convergence of the optimizing design algorithm
could be achieved for realistically flat priors.
The optimal post hoc designs assuming 1 and 3 treatment groups are presented
in Fig. 5. In order to make comparisons �2 was calculated for the model with 3
treatment groups in both designs. So there is almost no difference in efficiency
between the optimal designs (3:3%). However, the �2-criterion of the corre-
sponding study with 1 treatment group 31̇:19 times the �2-criterion of a study
with 3 treatment groups. So the efficiency gain by combining 3 treatments in
one study is about 0:19.

6 Conclusions

As is well known optimal design has to rely on a fixed model. This prevented
the application of optimal multistage designs in our experiment. A final model
could be given in the last stage. Insights gained from the design literature
were valuable. There is still inconvenience with the model because of high
correlations of some parameter estimates.
Post hoc analysis of the final model revealed substantial dependence of the de-
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sign efficiency on the prior distribution of the parameters. Thorough choice
of priors will be advisable for the Bayesian design of future experiments. This
property of the model also promises high efficiency gains by multistage de-
signs.
The number of volunteers per substance can be reduced considerable by testing
more than one substance simultaneously.
The program provided by M. A. Clyde is a valuable tool for computing optimal
Bayesian designs. Due to the clear software design modifications were made
with ease.
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